Encyclopedia
Scholarly Community
Encyclopedia
Entry
Video
Image
Journal
Book
News
About
Log in/Sign up
Submit
Entry
Video
Image
and
or
not
All
${ type }
To
Search
Subject:
All Disciplines
Arts & Humanities
Biology & Life Sciences
Business & Economics
Chemistry & Materials Science
Computer Science & Mathematics
Engineering
Environmental & Earth Sciences
Medicine & Pharmacology
Physical Sciences
Public Health & Healthcare
Social Sciences
Sort:
Most Viewed
Latest
Alphabetical (A-Z)
Alphabetical (Z-A)
Filter:
All
Topic Review
Biography
Peer Reviewed Entry
Video Entry
Topic Review
Graphene/Tourmaline-Composite-Modified Asphalt
In graphene/tourmaline-composite-modified asphalt, graphene can be used to further improve the road performance and emission reduction effect of tourmaline-modified asphalt. The temperature susceptibility, high temperature, anti-aging properties and rheological performance of the graphene/tourmaline-composite-modified asphalt are better than those of the tourmaline-modified asphalt and base asphalt. The asphalt fume reduction rate of graphene/tourmaline-composite-modified asphalt is higher than that of tourmaline-modified asphalt. With the increase of graphene content, the emission reduction performance increases gradually, and the enhancement effect of graphene on tourmaline performance is more obvious.
826
24 Aug 2021
Topic Review
C,C- and C,N-Chelated Organocopper Compounds
Copper-catalyzed and organocopper-involved reactions are of great significance in organic synthesis. To have a deep understanding of the reaction mechanisms, the structural characterizations of organocopper intermediates become indispensable. Meanwhile, the structure-function relationship of organocopper compounds could advance the rational design and development of new Cu-based reactions and organocopper reagents. Compared to the mono-carbonic ligand, the C,N- and C,C-bidentate ligands better stabilize unstable organocopper compounds. Bidentate ligands can chelate to the same copper atom via η2-mode, forming a mono-cupra-cyclic compounds with at least one acute C-Cu-C angle. When the bidentate ligands bind to two copper atoms via η1-mode at each coordinating site, the bimetallic macrocyclic compounds will form nearly linear C-Cu-C angles. The anionic coordinating sites of the bidentate ligand can also bridge two metals via μ2-mode, forming organocopper aggregates with Cu-Cu interactions and organocuprates with contact ion pair structures. The reaction chemistry of some selected organocopper compounds is highlighted, showing their unique structure–reactivity relationships.
809
08 Oct 2021
Topic Review
Platinum Based Cytostatic Drugs
Platinum based cytostatic drugs (Pt CDs) are among the most used drugs in cancer treatments which are administered via intravenous infusion and released partially intact or as transformation products.
797
19 Apr 2022
Topic Review
Fluorescent Chemosensors Based on Polyamine Ligands
Polyamine ligands are water-soluble receptors that are able to coordinate, depending on their protonation degree, either metal ions, anionic, or neutral species. Furthermore, the presence of fluorescent signaling units allows an immediate visual response/signal. For these reasons, they can find applications in a wide variety of fields, mainly those where aqueous media is necessary, such as biological studies, wastewater analysis, soil contamination, etc.
792
29 Dec 2021
Topic Review
Journal Inorganics
Inorganics (ISSN 2304-6740; CODEN: INORCW) is an international, scientific, peer-reviewed, open access journal of inorganic chemistry published monthly online by MDPI. It has been indexed in Chemical Abstracts, Scopus, and Web of Science.
754
26 Sep 2021
Topic Review
Structure and Properties of Graphene Quantum Dots
Graphene quantum dot (GQD) is a new type of carbon nanometer material. In addition to the excellent properties of graphene, it is superior due to the quantum limit effect and edge effect. Because of its advantages such as water solution, strong fluorescent, small size, and low biological toxicity, it has important application potential in various fields, especially in sensors and biomedical areas, which are mainly used as optical electrical sensors as well as in biological imaging and tumor therapy. In addition, GQDs have very important characteristics, such as optical and electrical properties. There are many preparation methods, divided into top-down and bottom-up methods, which have different advantages and disadvantages, respectively. In addition, the modification methods include heterogeneous doping, surface heterogeneity, etc.
752
17 Jan 2024
Topic Review
Fluorescence Imaging for Biomedical Applications
Molecular imaging offers the possibility to investigate biological and biochemical processes non-invasively and to obtain information on both anatomy and dysfunctions. Based on the data obtained, a fundamental understanding of various disease processes can be derived and treatment strategies can be planned. In this context, methods that combine several modalities in one probe are increasingly being used. Due to the comparably high sensitivity and provided complementary information, the combination of nuclear and optical probes has taken on a special significance.
750
13 Apr 2022
Topic Review
Catalysts for Glycerol Reforming
The valuable products produced from glycerol transformation have become a research route that attracted considerable benefits owing to their huge volumes as well as a myriad of chemical and biological techniques for transforming glycerol into high-value compounds, such as fuel additives, biofuels, precursors, and other useful chemicals, etc. Steam, aqueous, and autothermal reforming processes have been primarily investigated in glycerol reforming. An update on glycerol reforming is given, with an exclusive focus on the various catalyst's performance in designing reaction operation conditions.
725
25 Jul 2022
Topic Review
Metal-Based Chemotherapeutic Treatments
Herein we provides an overview of the various research approaches we have explored in recent years to improve metal-based agents for cancer or infection treatments. Although cisplatin, carboplatin, and oxaliplatin remain the cornerstones in tumor chemotherapy, the discovery and approval of novel inorganic anticancer drugs is a very slow process. Analogously, although a few promising inorganic drugs have found clinical application against parasitic or bacterial infections, their use remains relatively limited. Moreover, the discovery process is often affected by small therapeutic enhancements that are not attractive for the pharmaceutical industry. However, the availability of increasing mechanistic information for the modes of action of established inorganic drugs is fueling the exploration of various approaches for developing effective inorganic chemotherapy agents. Through a series of examples, some from our own research experience, we focus our attention on a number of promising strategies, including (1) drug repurposing, (2) the simple modification of the chemical structures of approved metal-based drugs, (3) testing novel drug combinations, and (4) newly synthesized complexes coupling different anticancer drugs. Accordingly, we aim to suggest and summarize a series of reliable approaches that are exploitable for the development of improved and innovative treatments.
716
25 May 2021
Topic Review
Structure and Functions of Aβ and Tau Proteins
The amyloid hypothesis, i.e., the abnormal accumulation of toxic Aβ assemblies in the brain, has been considered the mainstream concept sustaining research in Alzheimer’s Disease (AD). However, the course of cognitive decline and AD development better correlates with tau accumulation rather than amyloid peptide deposition. Moreover, all clinical trials of amyloid-targeting drug candidates have been unsuccessful, implicitly suggesting that the amyloid hypothesis needs significant amendments. Accumulating evidence supports the existence of a series of potentially dangerous relationships between Aβ oligomeric species and tau protein in AD.
715
29 Aug 2022
Topic Review
Copper-Based Metal–Organic Frameworks for Click Chemistry
In the extensive terrain of catalytic procedures for the synthesis of organic molecules, metal–organic frameworks (MOFs) as heterogenous catalysts have been investigated in a variety of chemical processes, including Friedel–Crafts reactions, condensation reactions, oxidations, and coupling reactions, and utilized owing to their specific properties such as high porosity, tuneability, extraordinary catalytic activity, and recyclability.
706
13 Jan 2023
Topic Review
Uranium Sulfate
Uranium sulfate (U(SO4)2) is a water-soluble salt of uranium. It is a very toxic compound. Uranium sulfate minerals commonly are widespread around uranium bearing mine sites, where they usually form during the evaporation of acid sulfate-rich mine tailings which have been leached by oxygen-bearing waters. Uranium sulfate is a transitional compound in the production of Uranium hexafluoride. It was also used to fuel aqueous Homogeneous Reactors.
695
28 Oct 2022
Topic Review
Organometallic Chemistry of Guanidines
Guanidines, nitrogen-rich compounds, appear as one such potential alternatives as ligands or proligands. In addition to occurring in a plethora of natural compounds, and thus in compounds of pharmacological use, guanidines allow a wide variety of coordination modes to different metal centers along the periodic table, with their monoanionic chelate derivatives being the most common.
672
18 Oct 2022
Topic Review
Sodium-Vanadium Bronze Na9V14O35
Na9V14O35 (η-NaxV2O5) has been synthesized by a solid-state route in an evacuated sealed silica tube and tested as electroactive material for Na half-cells. Being charged to 4.6 V vs. Na+/Na, almost 3 Na can be extracted per Na9V14O35 formula unit, resulting in a charge capacity of about 60 mAh g−1. Upon discharge below 1 V, Na9V14O35 uptakes Na up to the Na:V = 1:1 atomic ratio that is accompanied by a drastic increase of the separation between the layers of the VO4 tetrahedra and VO5 tetragonal pyramids, and a volume increase of about 31%. The induced structure instability triggers a transformation of the ordered layered Na9V14O35 structure into a rock-salt type disordered structure. Ultimately, the amorphous products of a conversion reaction are formed at 0.1 V, delivering the discharge capacity up to 490 mAh g−1, which, however, quickly fades with the number of charge-discharge cycles.
654
11 Jan 2022
Topic Review
All-d-Metal Heusler Alloys
A promising strategy, resulting in novel compounds with better mechanical properties and substantial magnetocaloric effects, is favoring the d–d hybridization with transition-metal elements to replace p–d hybridization. The term given to these materials is “all-d-metal”.
654
10 Feb 2023
Topic Review
Metals in Parkinson’s and Alzheimer’s Diseases
Metal ions are fundamental to guarantee the regular physiological activity of the human organism. They are involved in several biological processes such as electron transfer, oxygen transport, the maintenance of osmotic pressure, and the regulation of DNA transcription. Metals such as iron, cobalt, selenium, copper, zinc, and manganese are essential for human life and are usually required in trace amounts. On the other hand, aluminum, mercury, arsenic, and others are considered non-essential metals since they possess no biological function. The importance of metals in the human organism is so fundamental that several pathologies, among which are neurodegenerative diseases (NDs), are related to a common phenomenon known as metal dyshomeostasis.
633
28 Jul 2023
Topic Review
Brief History of Oxygen
Oxygen, a paramagnetic, diradical gaseous (at room temperature) molecule, is instrumental to life as we know it. It is also crucial to some medical therapies, used in multiple industries and has even been found on other planets. The importance of oxygen cannot be overplayed.
617
28 Apr 2022
Topic Review
NGF Peptides Bind Copper(II)
Nerve growth factor (NGF) is a protein essential to neurons survival, which interacts with its receptor as a non-covalent dimer. Copper affects biological activity of NGF and conversely NGF may regulates copper trafficking in synaptic cleft.
603
10 Jun 2021
Topic Review
Heteronuclear Metal Complexes with Anticancer Activity
Transition metal complexes have been deeply studied for different applications, such as catalysis, antimicrobial, and also antitumoral drugs. Platinum complexes are probably the most well-known and studied in the field of anticancer compounds, also thanks to the omnipresence of cisplatin and its derivatives as a starting point. Two promising new strategies to increase the efficacy of transition metal-based complexes have been described. First, the possibility of assembling two biologically active fragments containing different metal centres into the same molecule were considered, thus obtaining a heterobimetallic complex. Secondly, the conjugation of metal-based complexes to a targeting moiety was discussed.
601
09 Jan 2023
Topic Review
Oxonium Derivatives of nido-Carborane
Recent decades have demonstrated a growing interest in the chemistry of 7,8-dicarba-nido-undecaborante anion (nido-carborane) due to the wide possibilities of its application from medicine to catalysis. One of the main approaches to the modification of nido-carborane cluster is the ring-opening reactions of its cyclic oxonium derivatives with various nucleophiles, which opens practically unlimited prospects for the incorporation of nido-carborane into various macro- and biomolecules.
573
10 Feb 2022
Page
of
5
Featured Entry Collections
>>
Featured Books
>>
Encyclopedia of Social Sciences
Chief Editor:
Kum Fai Yuen
Encyclopedia of COVID-19
Chief Editor:
Stephen Bustin
Encyclopedia of Fungi
Chief Editor:
Luis V. Lopez-Llorca
Encyclopedia of Digital Society, Industry 5.0 and Smart City
Chief Editor:
Sandro Serpa
Entry
Video
Image
Journal
Book
News
About
Log in/Sign up
New Entry
New Video
New Images
About
Terms and Conditions
Privacy Policy
Advisory Board
Contact
Partner
ScholarVision Creations
Feedback
Top
Feedback
×
Help Center
Browse our user manual, common Q&A, author guidelines, etc.
Rate your experience
Let us know your experience and what we could improve.
Report an error
Is something wrong? Please let us know!
Other feedback
Other feedback you would like to report.
×
Did you find what you were looking for?
Love
Like
Neutral
Dislike
Hate
0
/500
Email
Do you agree to share your valuable feedback publicly on
Encyclopedia
’s homepage?
Yes, I agree. Encyclopedia can post it.
No, I do not agree. I would not like to post my testimonial.
Webpage
Upload a screenshot
(Max file size 2MB)
Submit
Back
Close
×