You're using an outdated browser. Please upgrade to a modern browser for the best experience.
Subject:
All Disciplines Arts & Humanities Biology & Life Sciences Business & Economics Chemistry & Materials Science Computer Science & Mathematics Engineering Environmental & Earth Sciences Medicine & Pharmacology Physical Sciences Public Health & Healthcare Social Sciences
Sort by:
Most Viewed Latest Alphabetical (A-Z) Alphabetical (Z-A)
Filter:
All Topic Review Biography Peer Reviewed Entry Video Entry
Topic Review
Specific Relative Angular Momentum
In celestial mechanics the specific relative angular momentum [math]\displaystyle{ \vec{h} }[/math] plays a pivotal role in the analysis of the two-body problem. One can show that it is a constant vector for a given orbit under ideal conditions. This essentially proves Kepler's second law. It's called specific angular momentum because it's not the actual angular momentum [math]\displaystyle{ \vec{L} }[/math], but the angular momentum per mass. Thus, the word "specific" in this term is short for "mass-specific" or divided-by-mass: Thus the SI unit is: m2·s−1. [math]\displaystyle{ m }[/math] denotes the reduced mass [math]\displaystyle{ \frac{1}{m} = \frac{1}{m_1}+\frac{1}{m_2} }[/math].
  • 5.1K
  • 11 Nov 2022
Topic Review
Teleparallel Equivalent of General Relativity
The teleparallel equivalent of general relativity (TEGR) is an alternative geometrical formulation of the relativistic theory of gravitation. A brief description of the  TEGR is presented. The building blocks of the theory and few main achievements are discussed.
  • 4.9K
  • 30 Oct 2020
Topic Review
Wake
In fluid dynamics, a wake may either be: 1. the region of recirculating flow immediately behind a moving or stationary blunt body, caused by viscosity, which may be accompanied by flow separation and turbulence, or 2. the wave pattern on the water surface downstream of an object in a flow, or produced by a moving object (e.g. a ship), caused by density differences of the fluids above and below the free surface and gravity (or surface tension).
  • 4.8K
  • 08 Nov 2022
Topic Review
Shear Strain
In physics, deformation is the continuum mechanics transformation of a body from a reference configuration to a current configuration. A configuration is a set containing the positions of all particles of the body. A deformation can occur because of external loads, intrinsic activity (e.g. muscle contraction), body forces (such as gravity or electromagnetic forces), or changes in temperature, moisture content, or chemical reactions, etc. Strain is related to deformation in terms of relative displacement of particles in the body that excludes rigid-body motions. Different equivalent choices may be made for the expression of a strain field depending on whether it is defined with respect to the initial or the final configuration of the body and on whether the metric tensor or its dual is considered. In a continuous body, a deformation field results from a stress field due to applied forces or because of some changes in the temperature field of the body. The relation between stress and strain is expressed by constitutive equations, e.g., Hooke's law for linear elastic materials. Deformations which cease to exist after the stress field is removed are termed as elastic deformation. In this case, the continuum completely recovers its original configuration. On the other hand, irreversible deformations remain. They exist even after stresses have been removed. One type of irreversible deformation is plastic deformation, which occurs in material bodies after stresses have attained a certain threshold value known as the elastic limit or yield stress, and are the result of slip, or dislocation mechanisms at the atomic level. Another type of irreversible deformation is viscous deformation, which is the irreversible part of viscoelastic deformation. In the case of elastic deformations, the response function linking strain to the deforming stress is the compliance tensor of the material.
  • 4.8K
  • 11 Nov 2022
Topic Review
Holika
Holika (Sanskrit: होलिका) was a demoness in Hindu Vedic scriptures, who was burnt to death with the help of God Vishnu. She was the sister of King Hiranyakashipu and aunt of Prahlad. The story of Holika Dahan (Holika's death) signifies the triumph of good over evil. Holika is associated with the annual bonfire on the night before Holi, the Hindu festival of colors.
  • 4.6K
  • 29 Nov 2022
Topic Review
Degrees of Freedom (Physics and Chemistry)
In physics and chemistry, a degree of freedom is an independent physical parameter in the formal description of the state of a physical system. The set of all states of a system is known as the system's phase space, and the degrees of freedom of the system are the dimensions of the phase space. The location of a particle in three-dimensional space requires three position coordinates. Similarly, the direction and speed at which a particle moves can be described in terms of three velocity components, each in reference to the three dimensions of space. If the time evolution of the system is deterministic (where the state at one instant uniquely determines its past and future position and velocity as a function of time) such a system has six degrees of freedom. If the motion of the particle is constrained to a lower number of dimensions – for example, the particle must move along a wire or on a fixed surface – then the system has fewer than six degrees of freedom. On the other hand, a system with an extended object that can rotate or vibrate can have more than six degrees of freedom. In classical mechanics, the state of a point particle at any given time is often described with position and velocity coordinates in the Lagrangian formalism, or with position and momentum coordinates in the Hamiltonian formalism. In statistical mechanics, a degree of freedom is a single scalar number describing the microstate of a system. The specification of all microstates of a system is a point in the system's phase space. In the 3D ideal chain model in chemistry, two angles are necessary to describe the orientation of each monomer. It is often useful to specify quadratic degrees of freedom. These are degrees of freedom that contribute in a quadratic function to the energy of the system. Depending on what one is counting, there are several different ways that degrees of freedom can be defined, each with a different value.
  • 4.5K
  • 25 Nov 2022
Topic Review
Strain Rate Tensor
In continuum mechanics, the strain rate tensor is a physical quantity that describes the rate of change of the deformation of a material in the neighborhood of a certain point, at a certain moment of time. It can be defined as the derivative of the strain tensor with respect to time, or as the symmetric component of the gradient (derivative with respect to position) of the flow velocity. The strain rate tensor is a purely kinematic concept that describes the macroscopic motion of the material. Therefore, it does not depend on the nature of the material, or on the forces and stresses that may be acting on it; and it applies to any continuous medium, whether solid, liquid or gas. On the other hand, for any fluid except superfluids, any gradual change in its deformation (i.e. a non-zero strain rate tensor) gives rise to viscous forces in its interior, due to friction between adjacent fluid elements, that tend to oppose that change. At any point in the fluid, these stresses can be described by a viscous stress tensor that is, almost always, completely determined by the strain rate tensor and by certain intrinsic properties of the fluid at that point. Viscous stress also occur in solids, in addition to the elastic stress observed in static deformation; when it is too large to be ignored, the material is said to be viscoelastic.
  • 4.5K
  • 02 Dec 2022
Topic Review
A Message from Earth (2008)
A Message from Earth (AMFE) is a high-powered digital radio signal that was sent on 9 October 2008 towards Gliese 581c, a large terrestrial extrasolar planet orbiting within the Gliese 581 system. The signal is a digital time capsule containing 501 messages that were selected through a competition on the social networking site Bebo. The message was sent using the RT-70 radar telescope. The signal will reach the planet Gliese 581c in early 2029. More than half a million people including celebrities and politicians participated in the AMFE project, which was the world's first digital time capsule where the content was selected by the public. As of 1 February 2018, the message has traveled 62.43 trillion kilometers of the total 192 trillion kilometers, which is 33.5% of the distance to the Gliese 581 system. On 13 February 2015, scientists (including David Grinspoon, Seth Shostak, and David Brin) at an annual meeting of the American Association for the Advancement of Science, discussed Active SETI and whether transmitting a message to possible intelligent extraterrestrials in the Cosmos was a good idea; That same week, a statement was released, signed by many in the SETI community, that a "worldwide scientific, political and humanitarian discussion must occur before any message is sent". However neither Frank Drake, nor Seth Shostak signed this appeal. On 28 March 2015, a related essay with some different point of view was written by Seth Shostak and published in The New York Times .
  • 4.4K
  • 21 Oct 2022
Topic Review
Mean Field Theory
In physics and probability theory, mean-field theory (aka MFT or rarely self-consistent field theory) studies the behavior of high-dimensional random (stochastic) models by studying a simpler model that approximates the original by averaging over degrees of freedom. Such models consider many individual components that interact with each other. In MFT, the effect of all the other individuals on any given individual is approximated by a single averaged effect, thus reducing a many-body problem to a one-body problem. The main idea of MFT is to replace all interactions to any one body with an average or effective interaction, sometimes called a molecular field. This reduces any multi-body problem into an effective one-body problem. The ease of solving MFT problems means that some insight into the behavior of the system can be obtained at a lower computational cost. MFT has since been applied to a wide range of fields outside of physics, including statistical inference, graphical models, neuroscience, artificial intelligence, epidemic models, queueing theory, computer network performance and game theory, as in the Quantal response equilibrium.
  • 4.4K
  • 03 Nov 2022
Topic Review
Sociology of Space
The sociology of space is a sub-discipline of sociology that mostly borrows from theories developed within the discipline of geography, including the sub fields of human geography, economic geography, and feminist geography. The "sociology" of space examines the social and material constitution of spaces. It is concerned with understanding the social practices, institutional forces, and material complexity of how humans and spaces interact. The sociology of space is an inter-disciplinary area of study, drawing on various theoretical traditions including Marxism, postcolonialism, and Science and Technology Studies, and overlaps and encompasses theorists with various academic disciplines such as geography and architecture. Edward T. Hall developed the study of Proxemics which concentrates on the empirical analysis of space in psychology.
  • 4.3K
  • 03 Nov 2022
Topic Review
Raksha Bandhan
Raksha Bandhan, also Rakshabandhan, or Rakhi, is a popular, traditionally Hindu, annual rite, or ceremony, which is central to a festival of the same name, celebrated in parts of South Asia, and among people influenced by South Asian culture around the world. On this day, sisters of all ages tie a talisman, or amulet, called the rakhi, around the wrists of their brothers, symbolically protecting them, receiving a gift in return, and traditionally investing the brothers with a share of the responsibility of their potential care. Raksha Bandhan is observed on the last day of the Hindu lunar calendar month of Shraavana, which typically falls in August. The expression "Raksha Bandhan," Sanskrit, literally, "the bond of protection, obligation, or care," is now principally applied to this ritual. Until the mid-20th-century, the expression was more commonly applied to a similar ritual, also held on the same day, with precedence in ancient Hindu texts, in which a domestic priest ties amulets, charms, or threads on the wrists of his patrons, or changes their sacred thread, and receives gifts of money; in some places, this is still the case. In contrast, the sister-brother festival, with origins in folk culture, had names which varied with location, with some rendered as Saluno, Silono, and Rakri. A ritual associated with Saluno included the sisters placing shoots of barley behind the ears of their brothers. Of special significance to married women, Raksha Bandhan is rooted in the practice of territorial or village exogamy, in which a bride marries out of her natal village or town, and her parents, by custom, do not visit her in her married home. In rural north India, where village exogamy is strongly prevalent, large numbers of married Hindu women travel back to their parents' homes every year for the ceremony. Their brothers, who typically live with the parents or nearby, sometimes travel to their sisters' married home to escort them back. Many younger married women arrive a few weeks earlier at their natal homes and stay until the ceremony. The brothers serve as lifelong intermediaries between their sisters' married and parental homes, as well as potential stewards of their security. In urban India, where families are increasingly nuclear, the festival has become more symbolic, but continues to be highly popular. The rituals associated with this festival have spread beyond their traditional regions and have been transformed through technology and migration, the movies, social interaction, and promotion by politicized Hinduism, as well as by the nation state. Among women and men who are not blood relatives, there is also a transformed tradition of voluntary kin relations, achieved through the tying of rakhi amulets, which have cut across caste and class lines, and Hindu and Muslim divisions. In some communities or contexts, other figures, such as a matriarch, or a person in authority, can be included in the ceremony in ritual acknowledgement of their benefaction.
  • 4.3K
  • 18 Oct 2022
Topic Review
Power
In physics, power is the amount of energy transferred or converted per unit time. In the International System of Units, the unit of power is the watt, equal to one joule per second. In older works, power is sometimes called activity. Power is a scalar quantity. Power is related to other quantities; for example, the power involved in moving a ground vehicle is the product of the traction force on the wheels and the velocity of the vehicle. The output power of a motor is the product of the torque that the motor generates and the angular velocity of its output shaft. Likewise, the power dissipated in an electrical element of a circuit is the product of the current flowing through the element and of the voltage across the element.
  • 4.3K
  • 31 Oct 2022
Topic Review
Solar Tree
A solar tree is a structure incorporating solar energy technology on a single pillar, like a tree trunk. It may be a solar artwork or a functional power generator.
  • 4.2K
  • 17 Oct 2022
Topic Review
Applications of Liquid Crystals-Based Sensors
Liquid crystals are a class of chemical substances that exist in intermediate states between crystalline solids and liquids. They thus share the anisotropic properties of crystalline solids as well as fluid properties of isotropic liquids. 
  • 4.2K
  • 23 Mar 2022
Topic Review
Types of Snow
Types of snow can be designated by the shape of its flakes, description of how it is falling, and by how it collects on the ground. A blizzard and snow storm indicate heavy snowfalls over a large area, snow squalls give heavy snowfalls over narrow bands, while flurries are used for the lightest snowfall. Types which fall in the form of a ball, rather than a flake, are known as graupel, with sleet and snow grains as types of graupel. Once on the ground, snow can be categorized as powdery when fluffy, granular when it begins the cycle of melting and refreezing, and crud or eventually ice once it packs down into a dense drift after multiple melting and refreezing cycles. When powdering, snow drifts with the wind or ground blizzard, sometimes to the depth of several metres. After attaching to hillsides, blown snow can evolve into a snow slab, which is an avalanche hazard on steep slopes.
  • 4.1K
  • 04 Nov 2022
Biography
Ashoke Sen
Ashoke Sen, FRS (/əˈʃoʊk sɛn/; born 1956) is an Indian theoretical physicist and distinguished professor at the Harish-Chandra Research Institute, Allahabad.[1] He is also an honorary fellow in National Institute of Science Education and Research (NISER), Bhubaneswar, India [2] and also a Morningstar Visiting professor at MIT and a distinguished professor at the Korea Institute for Advanced
  • 4.1K
  • 16 Nov 2022
Topic Review
Solid Oxide Electrolysis Cells and SOFCs Components
Solid oxide electrolysis cells (SOECs) and solid oxide fuel cells (SOFCs) are the leading high-temperature devices to realize the global “Hydrogen Economy”. These devices are inherently multi-material (ceramic and cermets). They have multi-scale, multilayer configurations (a few microns to hundreds of microns) and different morphology (porosity and densification) requirements for each layer. Adjacent layers should exhibit chemical and thermal compatibility and high-temperature mechanical stability. 
  • 4.0K
  • 20 Oct 2022
Topic Review
Mode-locking
Mode-locking is a technique in optics by which a laser can be made to produce pulses of light of extremely short duration, on the order of picoseconds (10−12 s) or femtoseconds (10−15 s). A laser operated in this way is sometimes referred to as a femtosecond laser, for example in modern refractive surgery. The basis of the technique is to induce a fixed-phase relationship between the longitudinal modes of the laser's resonant cavity. Constructive interference between these modes can cause the laser light to be produced as a train of pulses. The laser is then said to be 'phase-locked' or 'mode-locked'.
  • 3.9K
  • 03 Nov 2022
Topic Review
Space and Upper Atmosphere Research Commission
Established in its modern form on 16 September 1961 by an executive order of President of Pakistan, it is headquartered in Karachi, Sindh Province of Pakistan. Part of the Strategic Plans Division (SPD) of Pakistan Armed Forces, which is currently headquartered at the Chakalala Military District under the control of the Pakistan Air Force ; the space programmes recorded number of pioneering accomplishments in space flight during the initial years of its establishment. The country's first satellite, Badr-I, was built by the SUPARCO and launched from the Xichang Satellite Launch Center, China on July 16, 1990. However, during the meantime, the space programme suffered many setbacks, difficulties, and problems that partly slowed the progress of the space programme. The bureaucratic influence and politicization further lagged the space programme and many projects were cancelled by the superior authorities. Over the years, SUPARCO expanded and it now has several installations all over the country. It has multi-lateral and bilateral international agreements. SUPARCO has been quite dormant in recent years and also have failed to make any breakthroughs. SUPARCO's science and research is mainly focused and concentrated on understanding of the Solar system, Space weather, astrophysics, astronomical observation, climatic studies, space and telemedicine, remote sensing and the Earth observation.
  • 3.8K
  • 02 Nov 2022
Topic Review
Mooncake
A mooncake (simplified Chinese: 月饼; traditional Chinese: 月餅; pinyin: yuè bǐng; Jyutping: jyut6 beng2; Yale: yuht béng) is a Chinese bakery product traditionally eaten during the Mid-Autumn Festival (中秋節). The festival is for lunar appreciation and moon watching, when mooncakes are regarded as an indispensable delicacy. Mooncakes are offered between friends or on family gatherings while celebrating the festival. The Mid-Autumn Festival is one of the four most important Chinese festivals. Typical mooncakes are round pastries, measuring about 10 cm in diameter and 3–4 cm thick, and are commonly eaten in the Southern Chinese regions of Guangdong, Guangxi, Hong Kong and Macau. A rich thick filling usually made from red bean or lotus seed paste is surrounded by a thin (2–3 mm) crust and may contain yolks from salted duck eggs. Mooncakes are usually eaten in small wedges accompanied by tea. Today, it is customary for businessmen and families to present them to their clients or relatives as presents, helping to fuel a demand for high-end mooncakes. Due to China's influence, mooncakes and Mid-Autumn Festival are also enjoyed and celebrated in other parts of Asia. Mooncakes have also appeared in western countries as a form of delicacy.
  • 3.8K
  • 22 Nov 2022
  • Page
  • of
  • 18
Academic Video Service