You're using an outdated browser. Please upgrade to a modern browser for the best experience.
Subject:
All Disciplines Arts & Humanities Biology & Life Sciences Business & Economics Chemistry & Materials Science Computer Science & Mathematics Engineering Environmental & Earth Sciences Medicine & Pharmacology Physical Sciences Public Health & Healthcare Social Sciences
Sort by:
Most Viewed Latest Alphabetical (A-Z) Alphabetical (Z-A)
Filter:
All Topic Review Biography Peer Reviewed Entry Video Entry
Topic Review
Circular RNA Translation
A new RNA family has emerged, circular RNAs (circRNAs), generated by a process of backsplicing. CircRNAs have a strong impact on gene expression via their sponge function, and form a new mRNA family revealing the pivotal role of 5′ end-independent translation. CircRNAs are translated into proteins impacting various pathologies including cancer and neurodegenerative diseases, and are key players in aging.  RNA circle translation also provides many perspectives for biotechnological and therapeutic applications. 
  • 1.6K
  • 07 Dec 2020
Topic Review
The Chemistry of Reactive Oxygen Species Revisited
Living species are continuously subjected to all extrinsic forms of reactive oxidants and others that are produced endogenously. There is extensive literature on the generation and effects of reactive oxygen species (ROS) in biological processes, both in terms of alteration and their role in cellular signaling and regulatory pathways. Cells produce ROS as a controlled physiological process, but increasing ROS becomes pathological and leads to oxidative stress and disease. The induction of oxidative stress is an imbalance between the production of radical species and the antioxidant defense systems, which can cause damage to cellular biomolecules, including lipids, proteins and DNA. Cellular and biochemical experiments have been complemented in various ways to explain the biological chemistry of ROS oxidants. However, it is often unclear how this translates into chemical reactions involving redox changes. 
  • 1.6K
  • 30 Sep 2022
Topic Review
MYC
Despite the advancements in cancer treatments, gastric cancer is still one of the leading causes of death worldwide. In this context, it is of great interest to discover new and more effective ways of treating this disease. Accumulated evidences have demonstrated the amplification of 8q24.21 region in gastric tumors. Furthermore, this is the region where the widely known MYC oncogene and different microRNAs are located. MYC deregulation is key in tumorigenesis in various types of tissues, once it is associated with cell proliferation, survival, and drug resistance. microRNAs are a class of noncoding RNAs that negatively regulate the protein translation, and which deregulation is related with gastric cancer development. However, little is understood about the interactions between microRNAs and MYC. Here, we overview the MYC role and its relationship with the microRNAs network in gastric cancer aiming to identify potential targets useful to be used in clinic, not only as biomarkers, but also as molecules for development of promising therapies.
  • 1.6K
  • 27 Oct 2020
Topic Review
Parthenin
Parthenin, a sesquiterpene lactone of pseudoguaianolide type, is the representative secondary metabolite of the tropical weed Parthenium hysterophorus (Asteraceae). It accounts for a multitude of biological activities, including toxicity, allergenicity, allelopathy, and pharmacological aspects of the plant. Thus far, parthenin and its derivatives have been tested for chemotherapeutic abilities, medicinal properties, and herbicidal/pesticidal activities. However, due to the lack of toxicity-bioactivity relationship studies, the versatile properties of parthenin are relatively less utilised. The possibility of exploiting parthenin in different scientific fields (e.g., chemistry, medicine, and agriculture) makes it a subject of analytical discussion. It is important to highlight that the toxic nature of parthenin can be overcome by thoroughly understanding its structural basis, designing suitable derivatives, and deciding the appropriate doses.
  • 1.6K
  • 09 Oct 2021
Topic Review
Targeting Mitochondria in Kidney Diseases
Kidney function highly depends on mitochondria, organelles that regulate different metabolic pathways. Mitochondria-altered function and structure are present during acute kidney injury (AKI) and chronic kidney disease (CKD).
  • 1.6K
  • 08 Aug 2022
Topic Review
Sophorolipids—Bio-Based Antimicrobial Formulating Agents
Sophorolipids are well-known glycolipid biosurfactants, produced mainly by non-pathogenic yeast species such as Candida bombicola with high yield. Its unique environmental compatibility and high biodegradable properties have made them a focus in the present review for their promising applications in diverse areas.
  • 1.6K
  • 27 Sep 2022
Topic Review
Long Non-Coding RNAs in Triple-Negative Breast Cancer
Triple-negative breast cancer (TNBC) is a more aggressive type of breast cancer due to its heterogeneity and complex molecular mechanisms. TNBC has a high risk for metastasis, and it is difficult to manage clinical conditions of the patients. Long non-coding RNAs (lncRNAs) have emerged as a novel target to treat the multistep process of TNBC. LncRNAs regulate epigenetic expression levels, cell proliferation and apoptosis, and tumour invasiveness and metastasis. Thus, lncRNA-based early diagnosis and treatment options could be helpful, especially for patients with severe TNBC. 
  • 1.6K
  • 20 Apr 2023
Topic Review
Penicillium digitatum
Penicillium digitatum is a widespread pathogen responsible for the postharvest decay of citrus, one of the most economically important crops worldwide. Currently, chemical fungicides are still the main strategy to control the green mould disease caused by the fungus. In this scenario, understanding the molecular determinants underlying P. digitatum’s response to biological and chemical antifungals may help in the development of safer and more effective non-chemical control methods.
  • 1.6K
  • 20 Mar 2022
Topic Review
Structure of G Domain among G Proteins
The ancient guanine nucleotide-binding (G) proteins are a group of critical regulatory and signal transduction proteins, widely involved in diverse cellular processes of all kingdoms of life. YchF is a kind of universally conserved novel unconventional G protein that appears to be crucial for growth and stress response in eukaryotes and bacteria. YchF is able to bind and hydrolyze both adenine nucleoside triphosphate (ATP) and guanosine nucleoside triphosphate (GTP), unlike other members of the P-loop GTPases.
  • 1.6K
  • 04 May 2023
Topic Review
Tenascin-C-Derived Peptide, TNIIIA2
Matricellular proteins harbor functional sites within their molecular structures. These functional sites are released via proteolytic cleavage by inflammatory proteinases, and the peptides containing these hidden functional sites have unique biological activities that are often not detected in the parent molecules. A peptide containing the functional site of tenascin-C (TNC), termed TNIIIA2, which is highly released at sites of inflammation and in the tumor microenvironment, has the ability to potently and persistently activate β1-integrins. Based on these activities, TNIIIA2-containing TNC fragments/peptides are involved in the acquisition of aggressiveness in cancer progression.
  • 1.6K
  • 09 Nov 2020
Topic Review
Hypoxia-Inducible Factor
The hypoxia signalling pathway enables adaptation of cells to decreased oxygen availability. When oxygen becomes limiting, the central transcription factors of the pathway, hypoxia-inducible factors (HIFs), are stabilised and activated to induce the expression of hypoxia-regulated genes, thereby maintaining cellular homeostasis.
  • 1.6K
  • 18 Jan 2021
Topic Review
Therapeutic Potential of G-quadruplex Structural Junctions
We analyze further extension of G-quadruplexes by additional structural elements and investigate whether junction of G-quadruplex with duplex, hairpin, triplex or second G-quadruplex motif is favorable for aptamers stability and biological activity. Furthermore, we indicate the specific and pivotal role of G-quadruplex domain and the additional structural elements in the interactions with target molecules. Finally, we consider the potency of G-quadruplex junctions in the future applications and indicate the emerging research area that is still waiting for development to obtain highly specific and effective nucleic acid-based molecular tools.
  • 1.6K
  • 15 Oct 2021
Topic Review
Role of minor splicing factors ZRSR1 and ZRSR2 in embryo genome activation
Minor splicing plays an important role in vertebrate development. Zrsr1 and Zrsr2 paralog genes have essential roles in alternative splicing, mainly participating in the recognition of minor (U12) introns. Mice embryos with mutations in both splicing factors stopped developing mainly between the 2- and 4-cell stages, just after zygotic gene activation. RNA-seq analysis of Zrsr1/2mu 2-cell embryos showed altered gene and isoform expression of thousands of genes enriched in essential gene ontology terms and biological pathways related to ribosome, RNA transport, spliceosome, and essential zygotic gene activation steps. Alternative splicing of both U2 and U12 intron-containing genes was altered related to cell cycle and mitotic nuclear division. Zrsr1 and Zrsr2 were also required for the conversion of mouse-induced pluripotent stem cells into 2C-like cells. Zrsr1 and Zrsr2 emerge as necessary for zygotic gene activation and the conversion of induced pluripotent stem cells into 2C-like cells.
  • 1.6K
  • 18 Jun 2020
Topic Review
RNA-Binding Proteins (RBPs)
RNA-binding proteins (RBPs) are multi-faceted proteins in the regulation of RNA or its RNA splicing, localisation, stability, and translation.
  • 1.6K
  • 31 May 2021
Topic Review
Neural Stem Cell
Stem cells have extensive proliferative potential and the ability to differentiate into one or more mature cell types. The mechanisms by which stem cells accomplish self-renewal provide fundamental insight into the origin and design of multicellular organisms. These pathways allow the repair of damage and extend organismal life beyond that of component cells, and they probably preceded the evolution of complex metazoans.
  • 1.6K
  • 11 Mar 2021
Topic Review
Diet and Male Fertility
Nutrition can affect, negatively or positively, sperm quality and this effect depends on both quantitative and qualitative aspects of the diet, such as calorie content of each macronutrient (carbohydrates, protein, and fats), as well as on the specific fatty acid composition, carbohydrates, and protein profiles. While a Western diet is considered a risk factor for male infertility, the Mediterranean diet seems to protect against male infertility; moreover, the role of a vegetarian habitus in the preservation of sperm quality is controversial. Since diet may be an important modifiable determinant of male reproductive potential,  the role of daily nutrient exposure needs to be highlighted to preserve male fertility or to prevent male infertility. 
  • 1.6K
  • 06 May 2023
Topic Review
Nitrate–Nitrite–Nitric Oxide Pathway in Plants
Oxygen (O2) is the most crucial substrate for numerous biochemical processes in plants. Its deprivation is a critical factor that affects plant growth and may lead to death if it lasts for a long time. However, various biotic and abiotic factors cause O2 deprivation, leading to hypoxia and anoxia in plant tissues. To survive under hypoxia and/or anoxia, plants deploy various mechanisms such as fermentation paths, reactive oxygen species (ROS), reactive nitrogen species (RNS), antioxidant enzymes, aerenchyma, and adventitious root formation, while nitrate (NO3−), nitrite (NO2−), and nitric oxide (NO) have shown numerous beneficial roles through modulating these mechanisms. However, the end product of nitrate-nitrite-nitric oxide pathway, the NO is toxic if accumulated. Thus, its scavenging or inhibition is equally important for plant survival.
  • 1.6K
  • 14 Oct 2022
Topic Review
Phosphorylation Signals Downstream of Dopamine Receptors in NAc
Dopamine regulates emotional behaviors, including rewarding and aversive behaviors, through the mesolimbic dopaminergic pathway, which projects dopamine neurons from the ventral tegmental area to the nucleus accumbens (NAc). Protein phosphorylation is critical for intracellular signaling pathways and physiological functions, which are regulated by neurotransmitters in the brain. Previous studies have demonstrated that dopamine stimulated the phosphorylation of intracellular substrates, such as receptors, ion channels, and transcription factors, to regulate neuronal excitability and synaptic plasticity through dopamine receptors. Recent advances in proteomics techniques have clarified the mechanisms through which dopamine controls rewarding and aversive behaviors through signal pathways in the NAc.
  • 1.6K
  • 27 Oct 2022
Topic Review
Microglia in Prion Diseases
Prion diseases are rare transmissible neurodegenerative disorders caused by the accumulation of a misfolded isoform (PrPSc) of the cellular prion protein (PrPC) in the central nervous system (CNS). Neuropathological hallmarks of prion diseases are neuronal loss, astrogliosis, and enhanced microglial proliferation and activation. As immune cells of the CNS, microglia participate both in the maintenance of the normal brain physiology and in driving the neuroinflammatory response to acute or chronic (e.g., neurodegenerative disorders) insults. Microglia involvement in prion diseases, however, is far from being clearly understood.
  • 1.6K
  • 20 Nov 2020
Topic Review
Strategies to Increase HDR-Dependent CRISPR-Cas9 Mediated Genome Editing
CRISPR (Clustered regularly interspaced short palindromic repeats) technology affords a simple and robust way to edit the genomes of cells, providing powerful tools for basic research and medicine. While using Cas9 to cleave a genomic site is very efficient, making a specific mutation at that site is much less so, as it depends on the endogenous DNA repair machinery. Various strategies have been developed to increase the efficiency of knock-in mutagenesis, mostly focusing on improving homology-directed repair (HDR) while reducing non-homologous end joining (NHEJ). Some approaches affect these repair mechanisms globally, while others target their modulations to the site of the Cas9-induced double-strand break (DSB). Other innovations serve to increase the specificity and the efficiency of the editing mechanisms. In addition, methods such as base editing and prime editing produce knock-in mutations without a DSB.
  • 1.6K
  • 19 Oct 2022
  • Page
  • of
  • 133
Academic Video Service