Topic Review
Geiger-Marsden Experiments
The Geiger–Marsden experiments (also called the Rutherford gold foil experiment) were a landmark series of experiments by which scientists learned that every atom has a nucleus where all of its positive charge and most of its mass is concentrated. They deduced this after measuring how an alpha particle beam is scattered when it strikes a thin metal foil. The experiments were performed between 1908 and 1913 by Hans Geiger and Ernest Marsden under the direction of Ernest Rutherford at the Physical Laboratories of the University of Manchester.
  • 1.1K
  • 25 Oct 2022
Topic Review
Quantum Stream Cipher
Quantum cryptography includes quantum key distribution (QKD) and quantum stream cipher, but the researchers point out that the latter is expected as the core technology of next-generation communication systems. Various ideas have been proposed for QKD quantum cryptography, but most of them use a single-photon or similar signal. Then, although such technologies are applicable to special situations, these methods still have several difficulties to provide functions that surpass conventional technologies for social systems in the real environment. Thus, the quantum stream cipher has come to be expected as one promising countermeasure, which artificially creates quantum properties using special modulation techniques based on the macroscopic coherent state. In addition, it has the possibility to provide superior security performance than one-time pad cipher.
  • 1.0K
  • 25 May 2022
Topic Review
The Concept of “Quantum-Like”
The birth and spread of the prefix “quantum-” to disciplines other than physics, and the introduction of the term “quantum-like”, reflect the increasing dissatisfaction with the perceived limits and pitfalls of classic Western thought. Of course, the latter remains valuable; what is wrong is its dogmatic use and the claim of its exclusive capacity to comprehend the world. The development of quantum physics has been paralleled by the introduction of paraconsistent logics, such as fuzzy logic and dialetheism, a clear sign of the need for smoothing the inflexibility of Aristotelian logic. There is also a fil rouge (viz. an epistemological symmetry) linking the paradigm of quantum physics to ancient pre-Socratic and Eastern philosophies, suggesting the need for reappraising them in the process of reexamination of the classical thought. The increasing use of the term “quantum-like” calls for the defining and sharing of its meaning in order to properly adopt it and avoid possible misuse. 
  • 1.0K
  • 14 Mar 2022
Topic Review
Old Quantum Theory
The old quantum theory is a collection of results from the years 1900–1925 which predate modern quantum mechanics. The theory was never complete or self-consistent, but was rather a set of heuristic corrections to classical mechanics. The theory is now understood as the semi-classical approximation to modern quantum mechanics. The main and final accomplishments of the old quantum theory were the determination of the modern form of the periodic table by Edmund Stoner and the Pauli Exclusion Principle which were both premised on the Arnold Sommerfeld enhancements to the Bohr model of the atom. The main tool of the old quantum theory was the Bohr–Sommerfeld quantization condition, a procedure for selecting out certain states of a classical system as allowed states: the system can then only exist in one of the allowed states and not in any other state.
  • 1.0K
  • 22 Nov 2022
Topic Review
Event Symmetry
In physics, event symmetry includes invariance principles that have been used in some discrete approaches to quantum gravity where the diffeomorphism invariance of general relativity can be extended to a covariance under every permutation of spacetime events.
  • 990
  • 07 Nov 2022
Topic Review
Complementarity
In physics, complementarity is a conceptual aspect of quantum mechanics that Niels Bohr regarded as an essential feature of the theory. The complementarity principle holds that objects have certain pairs of complementary properties which cannot all be observed or measured simultaneously. An example of such a pair is position and momentum. Bohr considered one of the foundational truths of quantum mechanics to be the fact that setting up an experiment to measure one quantity of a pair, for instance the position of an electron, excludes the possibility of measuring the other, yet understanding both experiments is necessary to characterize the object under study. In Bohr's view, the behavior of atomic and subatomic objects cannot be separated from the measuring instruments that create the context in which the measured objects behave. Consequently, there is no "single picture" that unifies the results obtained in these different experimental contexts, and only the "totality of the phenomena" together can provide a completely informative description.
  • 923
  • 14 Nov 2022
Biography
Hans-Peter Dürr
Hans-Peter Dürr (7 October 1929 – 18 May 2014) was a German physicist. He worked on nuclear and quantum physics, elementary particles and gravitation, epistemology, and philosophy, and he has advocated responsible scientific and energy policies.[1] In 1987, he was awarded the Right Livelihood Award for "his profound critique of the Strategic Defense Initiative (SDI) and his work to convert hi
  • 870
  • 17 Nov 2022
Topic Review
Hidden-Measurements Interpretation
The hidden-measurements interpretation (HMI), also known as the hidden-measurements approach, is a realistic interpretation of quantum mechanics. The basis of the hidden-measurements interpretation (HMI) is the hypothesis that a quantum measurement involves a certain amount of unavoidable fluctuations in the way the measuring system interacts with the measured entity. As a consequence, the interaction is not a priori given in a quantum measurement, but is each time selected (that is, actualized, through a weighted symmetry breaking processes) when the experiment is executed; and since different measurement-interactions can produce different outcomes, this can explain why the output of a quantum measurement can only be predicted in probabilistic terms. (One should not think however of these hidden measurement-interactions to be something similar to, or to be describable in the same way as, the fundamental interactions (fundamental forces) of the standard model of particle physics, mediated by bosonic elementary entities).
  • 853
  • 03 Nov 2022
Topic Review
Bragg Grating External Cavity Semiconductor Lasers
External cavity semiconductor lasers (ECSLs) usually refer to the gain chip based on the introduction of external optical components (such as waveguides, gratings, prisms, etc.) to provide optical feedback. By designing the type, position and structure of external optical components, the optical properties of SLs (such as center wavelength, linewidth, tuning range, side-mode suppression ratio (SMSR), etc.) can be changed. Bragg grating external cavity semiconductor laser (BG-ECSL) is a device with a specific optical element (Bragg grating) in the external cavity. BG-ECSLs have excellent performances, such as narrow linewidth, tunability and high SMSR. They are widely used in WDM systems, coherent optical communication, gas detection, Lidar, atomic physics and other fields. 
  • 837
  • 09 Dec 2022
Topic Review
Regularization
In physics, especially quantum field theory, regularization is a method of modifying observables which have singularities in order to make them finite by the introduction of a suitable parameter called the regulator. The regulator, also known as a "cutoff", models our lack of knowledge about physics at unobserved scales (e.g. scales of small size or large energy levels). It compensates for (and requires) the possibility that "new physics" may be discovered at those scales which the present theory is unable to model, while enabling the current theory to give accurate predictions as an "effective theory" within its intended scale of use. It is distinct from renormalization, another technique to control infinities without assuming new physics, by adjusting for self-interaction feedback. Regularization was for many decades controversial even amongst its inventors, as it combines physical and epistemological claims into the same equations. However, it is now well understood and has proven to yield useful, accurate predictions.
  • 817
  • 28 Oct 2022
Topic Review
Sakurai's Bell Inequality
The intention of a Bell inequality is to serve as a test of local realism or local hidden variable theories as against quantum mechanics, applying Bell's theorem, which shows them to be incompatible. Not all the Bell's inequalities that appear in the literature are in fact fit for this purpose. The one discussed here holds only for a very limited class of local hidden variable theories and has never been used in practical experiments. It is, however, discussed by John Bell in his "Bertlmann's socks" paper (Bell, 1981), where it is referred to as the "Wigner–d'Espagnat inequality" (d'Espagnat, 1979; Wigner, 1970). It is also variously attributed to Bohm (1951?) and Belinfante (1973). Note that the inequality is not really applicable either to electrons or photons, since it builds in no probabilistic properties in the measurement process. Much more realistic hidden variable theories can be devised, modelling spin (or polarisation, in optical Bell tests) as a vector and allowing for the fact that not all emitted particles will be detected.
  • 767
  • 17 Oct 2022
Topic Review
Si-Compatible Nanostructured Photodetectors
Latest advances in the field of nanostructured photodetectors are considered, stating the types and materials, and highlighting the features of operation. Special attention is paid to the group-IV material photodetectors, including Ge, Si, Sn, and their solid solutions. Among the various designs, photodetectors with quantum wells, quantum dots, and quantum wires are highlighted. Such nanostructures have a number of unique properties, that made them striking to scientists’ attention and device applications. Nanostructures with quantum wells (QW) and quantum dots (QD) are very widely used to create photodetectors in the visible and infrared ranges. At the same time, for various applications, various semiconductor material systems are used that most fully satisfy the specific requirements for device structures: III–V (GaAs, AlGaAs, etc.), II–VI (CdHgTe), IV–IV (GeSi, GeSn, GeSiSn), and others.
  • 745
  • 01 Feb 2023
Biography
Valery Rubakov
Valery Anatolyevich Rubakov (Russian: Валерий Анатольевич Рубаков, born 16 February 1955 in Moscow, USSR) is a Russian theoretical physicist. His scientific interests include quantum field theory, elementary particle physics, and cosmology. He is affiliated with the Institute for Nuclear Research (INR) of the Russian Academy of Sciences in Moscow. Rubakov studied phys
  • 691
  • 15 Nov 2022
Topic Review
Colloidal Quantum Dots-Based Upconversion Devices
Colloidal quantum dots (CQD) have narrow emission linewidth and adjustable bandgap, so that CQD based infrared detectors can realize a widely tunable infrared spectral range. In addition, the luminescence spectrum of CQDs is extremely narrow, the color saturation and purity are high, and the optical stability is excellent, which can be obtained by solution procession. Therefore, CQDs-based LEDs (QLEDs) have excellent performances of a wide color gamut, long life, and low cost. For CQD baesd upconverters, except for the top electrode, the entire device can be prepared by solution method, which greatly simplifies the preparation of the device and make the upconverters are available for use in the fields of flexible devices.
  • 690
  • 31 Mar 2022
Topic Review
Charge
In physics, a charge is any of many different quantities, such as the electric charge in electromagnetism or the color charge in quantum chromodynamics. Charges correspond to the time-invariant generators of a symmetry group, and specifically, to the generators that commute with the Hamiltonian. Charges are often denoted by the letter Q, and so the invariance of the charge corresponds to the vanishing commutator [math]\displaystyle{ [Q,H]=0 }[/math], where H is the Hamiltonian. Thus, charges are associated with conserved quantum numbers; these are the eigenvalues q of the generator Q.
  • 663
  • 14 Oct 2022
Topic Review
Mid-Infrared External Cavity Quantum Cascade Lasers
External cavity quantum cascade lasers (ECQCLs) in the mid-infrared band have a series of unique spectral properties, which can be widely used in spectroscopy, gas detection, protein detection, medical diagnosis, free space optical communication, and so on, especially wide tuning range, the tuning range up to hundreds of wavenumbers; therefore, ECQCLs show great applications potential in many fields. 
  • 627
  • 29 Nov 2022
Topic Review
Chirality
A chiral phenomenon is one that is not identical to its mirror image (see the article on mathematical chirality). The spin of a particle may be used to define a handedness, or helicity, for that particle, which, in the case of a massless particle, is the same as chirality. A symmetry transformation between the two is called parity transformation. Invariance under parity transformation by a Dirac fermion is called chiral symmetry.
  • 614
  • 27 Oct 2022
Topic Review
Beta Function
In theoretical physics, specifically quantum field theory, a beta function, β(g), encodes the dependence of a coupling parameter, g, on the energy scale, μ, of a given physical process described by quantum field theory. It is defined as and, because of the underlying renormalization group, it has no explicit dependence on μ, so it only depends on μ implicitly through g. This dependence on the energy scale thus specified is known as the running of the coupling parameter, a fundamental feature of scale-dependence in quantum field theory, and its explicit computation is achievable through a variety of mathematical techniques.
  • 606
  • 22 Nov 2022
Topic Review
Loopholes in Bell Test Experiments
In Bell test experiments, there may be problems of experimental design or set-up that affect the validity of the experimental findings. These problems are often referred to as "loopholes". See the article on Bell's theorem for the theoretical background to these experimental efforts (see also John Stewart Bell). The purpose of the experiment is to test whether nature is best described using a local hidden variable theory or by the quantum entanglement theory of quantum mechanics. The "detection efficiency", or "fair sampling" problem is the most prevalent loophole in optical experiments. Another loophole that has more often been addressed is that of communication, i.e. locality. There is also the "disjoint measurement" loophole which entails multiple samples used to obtain correlations as compared to "joint measurement" where a single sample is used to obtain all correlations used in an inequality. To date, no test has simultaneously closed all loopholes. Ronald Hanson of the Delft University of Technology claims the first Bell experiment that closes both the detection and the communication loopholes. (This was not an optical experiment in the sense discussed below; the entangled degrees of freedom were electron spins rather than photon polarization.) Nevertheless, correlations of classical optical fields also violate Bell's inequality. In some experiments there may be additional defects that make "local realist" explanations of Bell test violations possible; these are briefly described below. Many modern experiments are directed at detecting quantum entanglement rather than ruling out local hidden variable theories, and these tasks are different since the former accepts quantum mechanics at the outset (no entanglement without quantum mechanics). This is regularly done using Bell's theorem, but in this situation the theorem is used as an entanglement witness, a dividing line between entangled quantum states and separable quantum states, and is as such not as sensitive to the problems described here. In October 2015, scientists from the Kavli Institute of Nanoscience reported that the Quantum nonlocality phenomenon is supported at the 96% confidence level based on a "loophole-free Bell test" study. These results were confirmed by two studies with statistical significance over 5 standard deviations which were published in December 2015. However, Alain Aspect writes that No experiment can be said to be totally loophole-free.
  • 599
  • 10 Oct 2022
Biography
Edwin C. Kemble
Edwin Crawford Kemble (January 28, 1889 in Delaware, Ohio – March 12, 1984) was an American physicist who made contributions to the theory of quantum mechanics and molecular structure and spectroscopy. During World War II, he was a consultant to the Navy on acoustic detection of submarines and to the Army on Operation Alsos.[1] Kemble began college in 1906 at Ohio Wesleyan University, but h
  • 571
  • 08 Dec 2022
  • Page
  • of
  • 3
ScholarVision Creations