You're using an outdated browser. Please upgrade to a modern browser for the best experience.
Subject:
All Disciplines Arts & Humanities Biology & Life Sciences Business & Economics Chemistry & Materials Science Computer Science & Mathematics Engineering Environmental & Earth Sciences Medicine & Pharmacology Physical Sciences Public Health & Healthcare Social Sciences
Sort by:
Most Viewed Latest Alphabetical (A-Z) Alphabetical (Z-A)
Filter:
All Topic Review Biography Peer Reviewed Entry Video Entry
Topic Review
Polymer 3D Printing
Polymer 3D printing is an emerging technology with recent research translating towards increased use in diverse industries. The polymer 3D printing process works by depositing a polymer in a directed fashion to form a completed part, generally through layer by layer deposition.  Polymer printing is advantageous because it enables printing low-cost functional parts with diverse properties and capabilities. An important aspect polymer 3D printing is the consideration of materials, processes, and design strategies that all influence a parts performance. Research in materials has led to the development of polymers with advantageous characteristics for mechanics and biocompatibility, with tuning of mechanical properties achieved by altering printing process parameters. Suitable polymer printing processes include extrusion, resin, and powder 3D printing, which enable directed material deposition for the design of advantageous and customized architectures.  Through careful consideration of material, process, and design it is possible to create a 3D printed polymer part of complex geometry that is tuned for a specific application on a per-print basis.
  • 6.8K
  • 23 Jun 2021
Topic Review
Wearable Devices for Non-Invasive Sensing
The development of wearable sensors is aimed at enabling continuous real-time health monitoring, which leads to timely and precise diagnosis anytime and anywhere. Unlike conventional wearable sensors that are somewhat bulky, rigid, and planar, research for next-generation wearable sensors has been focused on establishing fully-wearable systems. To attain such excellent wearability while providing accurate and reliable measurements, fabrication strategies should include (1) proper choices of materials and structural designs, (2) constructing efficient wireless power and data transmission systems, and (3) developing highly-integrated sensing systems.
  • 6.4K
  • 09 Feb 2021
Topic Review
Rotor Eccentricity
The rotor eccentricity is idealized as static eccentricity (SE), dynamic eccentricity (DE), or mixed eccentricity (ME), as shown in. The SE indicates that the rotor and the stator centers do not coincide, and the rotor revolves the rotor center. The DE indicates that the rotor and the stator centers do not coincide, and the rotor revolves both the stator and the rotor centers.
  • 6.1K
  • 03 Aug 2021
Topic Review
Gas Turbines with Water Injection and Full Evaporation
The concept behind humidifying gas turbines is that increasing the amount of water/steam injected into the turbine increases the amount of mass it moves. This results in a rise in the specific power output because the effort exerted by the compressor remains the same, and it takes far less effort to raise the pressure of a liquid than it does of a gas. The efficiency of the cycle may be improved by recovering the energy contained in the gas turbine’s exhaust and either preheating the injection water, making injection steam, or the recuperator’s preheating of the combustion oxidizer. The introduction of water prior to the combustor of a recuperated gas turbine lowers the compressed air’s temperature at the input of the recuperator. This results in an increase in the rate at which energy is recovered from the exhaust gas.
  • 5.9K
  • 27 Dec 2022
Topic Review
Floating Wind Turbines
Globally, the wind resource in deep water (depths > 60 m) is very abundant. Due to the abundance of potential at these depths, the wind turbines will need the design of a floating platform because the wind turbines that are currently in operation are mostly fixed at the bottom and are dependent upon conventional concrete with a gravity base that is not feasible at these depths. A balance among the two varying principles (i.e., the requirement for a stable foundation for the wind turbine’s control and operation and the nature of the substructure being innate, to respond to environmental forces) is required for the design of the floating platform for wind energy. The absence of rigid foundations results in an additional six degrees of freedom (DOFs) for the platform of floating turbines; three translational (surge X, sway Y, and heave Z) and three rotational (roll RotX, pitch RotY, and yaw RotZ). For the platforms of onshore wind turbines and bottom-mounted offshore wind turbines, the effect of soil-structure interaction (SSI) can be modeled with six degrees of freedom; three translational (horizontal forces in X and Y and vertical force in Z) and three rotational (rocking moments in X and Y and a torsional moment in Z) respectively.
  • 5.8K
  • 11 Oct 2021
Topic Review
Introduction to Nanofluids
Due to the combination of thermal engineering and the rapid rise of nanotechnology research over the past two decades, novel heat transfer fluids known as “nanofluids” have emerged. A “nanofluid” is a heat transfer fluid that has 1–100 nm-sized “nanoparticles”, which are suspended nanoparticles, scattered throughout the base fluid. To increase the stability of the working fluid, it is crucial to make sure the nanoparticle size is smaller than 100 nm. Water, oils, organic liquids (such as tri-ethylene-glycols, ethylene and refrigerants) and bio-fluids polymeric solutions are the most often utilized base fluids. Numerous studies throughout the years have documented diverse nanofluid preparation methods with various nanoparticle types and their heat transfer capabilities, in addition to advancing the information about nanofluids.
  • 5.6K
  • 13 Dec 2022
Topic Review Peer Reviewed
Low-Pressure Turbine Cooling Systems
Modern low-pressure turbine engines are equipped with casings impingement cooling systems. Those systems (called Active Clearance Control) are composed of an array of air nozzles, which are directed to strike turbine casing to absorb generated heat. As a result, the casing starts to shrink, reducing the radial gap between the sealing and rotating tip of the blade. Cooling air is delivered to the nozzles through distribution channels and collector boxes, which are connected to the main air supply duct. The application of low-pressure turbine cooling systems increases its efficiency and reduces engine fuel consumption.
  • 5.6K
  • 13 Apr 2022
Topic Review
Lattice Materials
Lattice material is a cellular material consisting of a periodic network of structural elements such as rods or beams. This network of lattices exists over a wide spectrum of scale from the nanoscale to macroscale and has been applied in a wide area of applications. In the nanoscale spectrum, most of the CNT (Carbon Nano Tube) based sensors are made using lattice materials. Micro-lattices material is being developed intensively as it offers high energy absorption capability. On a macroscale, due to its high stiffness and lightweight properties, lattice materials are widely used in aerospace applications.
  • 5.5K
  • 28 Mar 2022
Topic Review Peer Reviewed
Mechanics and Mathematics in Ancient Greece
This entry presents an overview on how mechanics in Greece was linked to geometry. In ancient Greece, mechanics was about lifting heavy bodies, and mathematics almost coincided with geometry. Mathematics interconnected with mechanics at least from the 5th century BCE and became dominant in the Hellenistic period. The contributions by thinkers such as Aristotle, Euclid, and Archytas on fundamental problems such as that of the lever are sketched. This entry can be the starting point for a deeper investigation on the connections of the two disciplines through the ages until our present day.
  • 5.4K
  • 13 Apr 2022
Topic Review Peer Reviewed
The Foundation of Classical Mechanics
Mechanics is the science of the equilibrium and motion of bodies subject to forces. The adjective classical, hence Classical Mechanics , was added in the 20th century to distinguish it from relativistic mechanics which studies motion with speed close to light speed and quantum mechanics which studies motion at a subatomic level.
  • 5.4K
  • 13 Apr 2022
Topic Review
Solar PV-Hydrogen-PEM Fuel Cell System
The results obtained from the design and analysis of a photovoltaic-hydrogen-PEM fuel cell (PVHPEMFC) hybrid system for Najaf City in Iraq has been presented. The hybrid system consists of photovoltaic arrays coupled with an electrolyzer to produce hydrogen, a PEM fuel cell that converts chemical energy (H2) to electricity, hydrogen storage, a battery storage system, and the load. In this kind of system, all components can be connected electrically in parallel. The voltage of the PV arrays and fuel cell must be high enough to charge the battery, and the voltage of the electrolyzer must be low enough for the battery to power it during periods of low insolation. The designed system model is based on the electrical component models and variable solar radiation data depending on the location.
  • 5.3K
  • 29 Oct 2020
Topic Review
Sandwich Structures
Sandwich structures are a class of multifunctional high-performance structural composites that have the advantages of being lightweight, of a high strength-to-weight ratio, and of high specific energy absorption capabilities. 
  • 5.2K
  • 01 Dec 2022
Topic Review
Digital Image Correlation
Digital Image Correlation (DIC) is a non-invasive imaging technique that has been used in a significant number of research fields to measure the strain fields across the surface of a body. This entry gives a basic overview of how the DIC method came to be, both in two and three dimensions and some information about the more recent development of DIC in the X-ray spectrum. 
  • 4.9K
  • 29 Oct 2020
Topic Review
Automotive Chassis Control Technology
Automotive chassis control technology plays a crucial role in ensuring the stability, performance, and safety of vehicles. This paper reviews and discusses automotive steering/braking/driving/suspension systems from perspectives of system composition, the state of the art, and key technologies. Detailed analysis is conducted on critical techniques related to system fault tolerance, road feel feedback, brake force distribution strategy, electric motors, and motor controllers.The development and application of automotive chassis control technology is in line with the goals and objectives for the advancement of the automotive industry in terms of innovation, safety, and environmental sustainability.
  • 4.8K
  • 29 Dec 2023
Topic Review
Solar Still
Solar stills are considered an essential component of solar energy utilization for converting sea, brackish, or wastewater to fresh water.
  • 4.8K
  • 30 Aug 2022
Topic Review
Inspection of Wind Turbine Blades
Wind turbines are known to be the most efficient method of green energy production, and wind turbine blades (WTBs) are known as a key component of the wind turbine system, with a major influence on the efficiency of the entire system. Wind turbine blades have a quite manual production process of composite materials, which induces various types of defects in the blade. Blades are susceptible to the damage developed by complex and irregular loading or even catastrophic collapse and are expensive to maintain. Failure or damage to wind turbine blades not only decreases the lifespan, efficiency, and fault diagnosis capability but also increases safety hazards and maintenance costs.
  • 4.8K
  • 02 Dec 2022
Topic Review
Single Fiber Endoscope
An endoscope is an imaging device made up of a long and thin tube that can be inserted into the hollow openings of the body to image the inner sections in real time and in a less invasive manner.
  • 4.6K
  • 12 Jan 2021
Topic Review
Electroactive Polymers
Electroactive polymers (EAPs) are a versatile class of electrically deformable polymers. These polymers have the ability to deform when excited by electrical potentials due to their inherent electro-mechanical properties. The piezoelectric couplings in EAPs provide them with unique capabilities that are of significant interest in actuators and soft robotics.
  • 4.5K
  • 12 Oct 2021
Topic Review
Graphene-Coating for Efficient Electronics Cooling
Thermal management is essential in electronics, as it improves reliability and enhances performance by removing heat generated by the devices. Thermal management of handheld systems such as laptops is becoming increasingly challenging due to increasing power dissipation. The power dissipated per unit area on the laptop electronic chips is increasing while the area of the chips itself it decreasing, resulting a high heat flux that causes an increase in temperature. The increasing temperature adversely affects the performance of laptops and in many cases leads to failure through such modes as thermal fatigue and dielectric breakdown. In this work, three dimensional steady state CFD model of a laptop motherboard is presented. The model accounts for heat transfer for both natural convection and radiation to the ambient air temperature. The present CFD study allow accurate, rapid, physical modelling to make decisions on materials, components and layout beside power control feedback to achieve performance and target lifetime with reduced testing requirements. An alternative design for the cooling of laptop microprocessor using only passive cooling is proposed. The results showed that the assembled a thin plate of a copper material coated with graphene and use it as a heat sinks with the microprocessor of the laptop providing an efficient and economical solution in thermal management. Considerable drop in microprocessor temperature is obtained through the heat dissipation path suggested in the new design. The proposed passive cooling solution has the advantages of fanless operation compared to the existing active cooling solutions such as the noise-free operation, lower energy consumption and higher reliability. We hope this work may open the way for huge boost in the technology of electric cooling by innovative manufacturing techniques.
  • 4.5K
  • 28 Oct 2020
Topic Review
Trends of Motor Characteristics
It is important to comprehensively evaluate which type of motor is most suitable when designing mechanical systems. This paper presents the results of a survey of the performance of electric and hydraulic servo motors which are commonly used in many mechanical systems and aims to provide quantitative data that can be used as a reference for selecting appropriate motors. We collected data on the characteristics of electric and hydraulic motors and compared and evaluated the characteristics of these servo motors using indexes such as torque, rotating speed, output power, power density, and power rate.
  • 4.5K
  • 20 Jan 2022
  • Page
  • of
  • 18
Academic Video Service