Topic Review
Exercise and Cartilage Regeneration Therapy
In response to exercise, articular chondrocytes increase their production of glycosaminoglycans, bone morphogenic proteins, and anti-inflammatory cytokines and decrease their production of proinflammatory cytokines and matrix-degrading metalloproteinases. These changes are associated with improvements in cartilage organization and reductions in cartilage degeneration. Studies in humans indicate that exercise enhances joint recruitment of bone marrow-derived mesenchymal stem cells and upregulates their expression of osteogenic and chondrogenic genes, osteogenic microRNAs, and osteogenic growth factors. Rodent experiments demonstrate that exercise enhances the osteogenic potential of bone marrow-derived mesenchymal stem cells while diminishing their adipogenic potential, and that exercise done after stem cell implantation may benefit stem cell transplant viability. Physical exercise also exerts a beneficial effect on the skeletal system by decreasing immune cell production of osteoclastogenic cytokines interleukin-1β, tumor necrosis factor-α, and interferon-γ, while increasing their production of antiosteoclastogenic cytokines interleukin-10 and transforming growth factor-β.
  • 2.3K
  • 28 Jan 2021
Topic Review
Muon Radiography with Nuclear Emulsion Detectors
The paper presents the test experiment to investigate one of UNESCO’s world heritage objects, an archaeological site in the Naryn-Kala citadel (Derbent, Republic of Dagestan, RF) hidden under the ground surface. The function of the site could be revealed by the muon radiography studies. Several nuclear emulsion detectors were exposed for two months inside the site at a depth about 10 m from the modern surface. The use of nuclear emulsions as probing radiation detectors combined with the potential of modern image analysis methods provides for a uniquely high resolution capacity of recording instrumentation and 3D reconstruction of the internal structure of the investigated object. Here we present short descrption of muon radiography method, the test experiment, data analysis details and the first results.
  • 2.2K
  • 30 Oct 2020
Topic Review
Stellar Aberration (Derivation from Lorentz Transformation)
Stellar aberration is an astronomical phenomenon "which produces an apparent motion of celestial objects". It can be proven mathematically that stellar aberration is due to the change of the astronomer's inertial frame of reference. The formula is derived with the use of Lorentz transformation of the star's coordinates. As the astronomer John Herschel has already explained in 1844, the stellar aberration does not depend on the relative velocity of the star towards Earth. Otherwise eclipsing binary stars would appear to be separated, in stark contrast to observation: both stars are rotating with high speed —and ever changing and different velocity vectors— around each other, but they appear as one spot all the time.
  • 2.2K
  • 27 Oct 2022
Topic Review
Progress of 2D Semiconductor-based photocatalysts
A complete view of basic principles and mechanisms with regard to improving the structure stability, physical and chemical properties of the low dimensional semiconductor-based photocatalysts is presented here. Various 2D semiconductor-based photocatalysts show a high electrochemical property and photocatalytic performance due to their ultrathin character, high specific surface area with more activity sites, tunable bandgap to absorb sunlight and versatile options in structural assembly with other nanosheets. At present, most photocatalysts still need rare or expensive noble metals to improve the photocatalytic activity, which inhibits their commercial-scale application extremely. Thus, developing less costly, earth-abundant semiconductor-based photocatalysts with the efficient conversion of sunlight energy remains the primary challenge. A concise overview of different types of 2D semiconductor-mediated photocatalysts is given to figure out the advantages and disadvantages for mentioned semiconductor-based photocatalysis, including the structural property and stability, synthesize method, electrochemical property, and optical properties for H2/O2 production half-reaction along with overall water splitting.
  • 2.2K
  • 21 Oct 2020
Topic Review
Gyrotrons
Gyrotrons are among the most powerful sources of coherent radiation that operate in CW and long pulse regimes in the sub-THz and the THz frequency ranges of the electromagnetic spectrum, i.e. between 0.3 THz and 3.0 THz (corresponding to wavelengths from 1.0 to 0.1 mm). This region, which spans between the frequency bands occupied by various electronic and photonic devices, respectively, is habitually called a THz power gap. The underlying mechanism of the operation of the gyrotron involves a formation of bunches of electrons gyrating in a helical electron beam and their synchronous interaction with a fast (i.e. having a superluminal phase velocity) electromagnetic wave, producing a bremsstrahlung radiation. In contrast to the slow-wave tubes, which utilize tiny structures with dimensions comparable to the wavelength of the radiation, the gyrotrons have a simpler resonant system (cavity resonator) with dimensions that are much greater than the wavelength. This allows much more powerful electron beams to be used and thus higher output powers to be achieved. Although in comparison with the classical microwave tubes the gyrotrons are characterized by greater volume and weight due to the presence of bulky parts (such as superconducting magnets and massive collectors where the energy of the spent electron beam is dissipated) they are much more compact and can easily be embedded in a sophisticated laboratory equipment (e.g. spectrometers, technological systems, etc.) than other devices such as free-electron lasers (FEL) and radiation sources based on electron accelerators. Nowadays, the gyrotrons are used as powerful sources of coherent radiation in the wide fields of high-power sub-THz and THz science and technologies [1][2][3].
  • 2.1K
  • 29 Oct 2020
Topic Review
MEMS Acoustic Emission Sensors
Micro-electro-mechanical-systems (MEMS) acoustic emission (AE) sensors are designed to detect active defects in materials with the transduction mechanisms of piezoresistivity, capacitance or piezoelectricity. The majority of MEMS AE sensors are designed as resonators to improve the signal-to-noise ratio. The fundamental design variables of MEMS AE sensors include resonant frequency, bandwidth/quality factor and sensitivity. Micromachining methods have the flexibility to tune the sensor frequency to a particular range, which is important, as the frequency of AE signal depends on defect modes, constitutive properties and structural composition.
  • 2.0K
  • 22 Dec 2020
Topic Review
Piezoelectric Transducers Energy Conversion Network
Conversion between mechanical energy and electrical energy is critically important in industrial applications. Piezoelectric materials are unique for their ability in electric–mechanical transduction by applications of piezoelectric transducers that are usually spherical, cylindrical, or schistose. This topic review presents the most recent development of a piezoelectric transducers energy conversion network.
  • 2.0K
  • 31 Oct 2020
Topic Review
Crystallization of LiNbO3
Due to its piezoelectric, ferroelectric, nonlinear optics, and pyroelectric properties, LiNbO3 crystal has found its wide applications in surface acoustic wave (SAW) devices, optical waveguides, optical modulators, and second-harmonic generators (SHG). LiNbO3 crystallized as R3c space group below Curie temperature shows spontaneous polarization that leads to its ferroelectric and piezoelectric properties. Physical and chemical characteristics of LiNbO3 are mainly determined by Li/Nb ratio, impurity cations, vacancies in a cation sublattice. Different sizes of LiNbO3 ranging from nanoscale and microscale to bulk size have been synthesized by solid state method, hydrothermal/solvothermal method, Czochralski (Cz) growth method, etc. Most basic and applied studies of LiNbO3 focus on its bulk single crystal.
  • 2.0K
  • 17 Dec 2021
Topic Review
High-Spectral-Resolution Lidar
High-spectral-resolution lidar (HSRL) is a powerful tool for atmospheric aerosol remote sensing. A ground-based high-spectral-resolution lidar (HSRL), operated at 532 nm wavelength, has been developed at Zhejiang University (ZJU) for aerosols and clouds studies. This lidar provides vertical profiles of aerosol scattering ratio together with lidar ratio and particle depolarization ratio at 532 nm. Determination of overlap function is a key step in the calibration of a high-spectral-resolution lidar (HSRL) and important guarantee of data retrieval, an iterative-based general determination (IGD) method for overlap function in HSRL is proposed. The standard method to retrieve the extinction coefficient from HSRL signals depends heavily on the signal-to-noise ratio (SNR). An iterative image reconstruction (IIR) method is proposed for the retrieval of the aerosol extinction coefficient based on HSRL data under low SNR condition. With the optical properties, a state-of-the-art method for feature detection and classification is proposed to automatically identify the features attributed to dust/polluted dust, urban/smoke, maritime aerosols, as well as ice and liquid water cloud during day and night.
  • 2.0K
  • 22 Feb 2021
Topic Review
FTIR for Vehicle Exhaust Emissions
In a Fourier Transform InfraRed (FTIR) spectrometer, some of the infrared (IR) radiation is absorbed by the sample, and some of it is passed through (transmitted). The resulting molecular absorption and transmission response can be used to identify the components of the sample and their concentration.
  • 2.0K
  • 20 Aug 2021
Topic Review
Dye-Sensitized Solar Cells
Dye-sensitized solar cells (DSSCs) have emerged as promising alternatives to traditional silicon-based solar cells due to their relatively high conversion efficiency, low cost, flexibility, and environmentally benign fabrication processes.
  • 1.9K
  • 25 Oct 2020
Topic Review
RFID Sensors for IoT
Abstract: Radio-frequency identification (RFID) sensors are one of the fundamental components of the Internet of Things.  Within this framework, chipless RFIDs are a breakthrough technology because, removing the cost associated with the chip, are at the same time printable, passive, low-power and suitable for harsh environments. For this reason, there is a clear motivation and interest to extend the chipless sensing functionality to physical, chemical, structural and environmental parameters. Temperature and humidity sensors, as well as localization, proximity, and structural health prototypes, have already been produced, and many other sensing applications are on the way. In this review, architectural approaches and requirements related to the materials employed for chipless RFID sensing are summarized. The state-of-the-art of many categories of sensors and their applications is reported and an analysis of the current limitations and possible solution strategies are given, together with an overview of expected future developments.
  • 1.8K
  • 29 Oct 2020
Topic Review
Ti/Al/X/Au Au-Contained Ohmic Contact Technique
AlGaN/GaN high electron mobility transistors (HEMTs) are regarded as promising candidates for a 5G communication system, which demands higher frequency and power. Source/drain ohmic contact is one of the key fabrication processes crucial to the device performance. Firstly, Aucontained metal stacks combined with RTA high-temperature ohmic contact schemes were presented and analyzed, including process conditions and contact formation mechanisms. Considering the issues with the Au-contained technique, the overview of a sequence of Au-free schemes is given and comprehensively discussed. In addition, in order to solve various problems caused by hightemperature conditions, novel annealing techniques including microwave annealing (MWA) and laser annealing (LA) were proposed to form Au-free low-temperature ohmic contact to AlGaN/GaN HEMT. The most popular metallization schemes of ohmic contact in AlGaN/GaN HEMT is Ti/Al/X/Au, where X can be Ni, Mo, Pt, Ta, Ir, etc.
  • 1.7K
  • 28 Jun 2022
Topic Review
Pentacene and Its Derivatives Deposition Methods
Pentacene is a well-known conjugated organic molecule with high mobility and a sensitive photo response. It is widely used in electronic devices, such as in organic thin-film transistors (OTFTs), organic light-emitting diodes (OLEDs), photodetectors, and smart sensors. With the development of flexible and wearable electronics, the deposition of good-quality pentacene films in large-scale organic electronics at the industrial level has drawn more research attention. Several methods are used to deposit pentacene thin films. The thermal evaporation technique is the most frequently used method for depositing thin films, as it has low contamination rates and a well-controlled deposition rate. Solution-processable methods such as spin coating, dip coating, and inkjet printing have also been widely studied because they enable large-scale deposition and low-cost fabrication of devices. 
  • 1.6K
  • 18 Apr 2022
Topic Review
Wearable Body Sensors
The use of wearable body sensors for health monitoring is a quickly growing field with the potential of offering a reliable means for clinical and remote health management. This includes both real-time monitoring and health trend monitoring with the aim to detect/predict health deterioration and also to act as a prevention tool. The aim of this systematic review was to provide a qualitative synthesis of studies using wearable body sensors for health monitoring. The synthesis and analysis have pointed out a number of shortcomings in prior research. Major shortcomings are demonstrated by the majority of the studies adopting an observational research design, too small sample sizes, poorly presented, and/or non-representative participant demographics (i.e., age, gender, patient/healthy). These aspects need to be considered in future research work.
  • 1.6K
  • 29 Oct 2020
Topic Review
Biaxial Tensile Test
Biaxial tensile test is a tensile testing in which the sample is stretched in two distinct directions. This technique is used to obtain the mechanical characteristics of anisotropic materials, such as composite materials, textiles, and soft biological tissues. There are three main types of biaxial tensile testing: Bursting test, based on a circular specimen clamped along the edge and inflated by air or water under pressure until the specimen bursts; Cylinder test, based on a hollow cylinder subjected to internal pressure and axial pressure or tension; Plane biaxial test, which offers the best result because of the independent force introduction in the two main directions.
  • 1.6K
  • 28 Oct 2022
Topic Review
LSPR Gas Sensors
The localized surface plasmon resonance (LSPR) phenomenon is known to be responsible for the unique colour effects observed in the ancient Roman Lycurgus Cup and at the windows of the medieval cathedrals. In both cases, the optical effects result from the interaction of the visible light (scattering and absorption) with the conduction band electrons of noble metal nanoparticles (gold, silver, and gold–silver alloys). These nanoparticles are dispersed in a dielectric matrix with a relatively high refractive index in order to push the resonance to the visible spectral range. At the same time, they have to be located at the surface to make LSPR sensitive to changes in the local dielectric environment, the property that is very attractive for sensing applications.
  • 1.5K
  • 29 Jun 2021
Topic Review
Density Profile of Liquid-Metal-Vapor Interface
Several metals and many alloys are in liquid form around room temperature, e.g., mercury (Hg, −38.8 °C), francium (Fr, 8.0 °C), cesium (Sc, 28.5 °C), gallium (Ga, 29.8 °C), the eutectic mercury-based alloys, and the eutectic gallium-based alloys. If eutectic, liquid metal alloys can be in liquid form that has been used in practical applications, replacing mercury. Liquid metals have high thermal and electric conductivity and have been used to conduct heat and electricity between non-metallic and metallic surfaces. They have also been used as thermal interface materials between coolers and processors. Concerning these metals, our understanding of the liquid-vapor interface is critical for proper applications. This entry summarizes the basic features of the density distribution of liquid metal-vapor interface, which are advanced based on pseudo-potential representation and numerical simulation at the University of Chicago.
  • 1.4K
  • 30 Dec 2020
Biography
Julius Edgar Lilienfeld
Julius Edgar Lilienfeld (April 18, 1882 – August 28, 1963) was a Jewish Austro-Hungarian-born German-American physicist and electronic engineer, credited with the first patents on the field-effect transistor (FET) (1925) and electrolytic capacitor (1931). Because of his failure to publish articles in learned journals and because high-purity semiconductor materials were not available yet, his
  • 1.4K
  • 10 Nov 2022
Topic Review
Self-Assembled III-V Semiconductor Quantum Dots
A fundamental understanding of the growth of semiconductors is essential for the optimization of quantum dot-based optoelectronic devices. Droplet epitaxy has proven to be the successful versatile growth method for instance growing quantum dots with a small fine structure splitting for quantum information technology. Precise control and tuning of the quantum dots for various applications is only possible through a detailed understanding of the growth mechanism at the atomic level, which creates the need for atomic-scale structural and composition characterization. We present an overview of the results of detailed structural and composition analysis by cross-sectional scanning tunneling microscopy and atom probe tomography of quantum dots grown by self-assembled droplet epitaxy where we focus mainly on strain-free GaAs/AlGaAs and strained InAs/InP QDs.
  • 1.4K
  • 19 Jan 2021
  • Page
  • of
  • 9
ScholarVision Creations