Your browser does not fully support modern features. Please upgrade for a smoother experience.
Subject:
All Disciplines Arts & Humanities Biology & Life Sciences Business & Economics Chemistry & Materials Science Computer Science & Mathematics Engineering Environmental & Earth Sciences Medicine & Pharmacology Physical Sciences Public Health & Healthcare Social Sciences
Sort by:
Most Viewed Latest Alphabetical (A-Z) Alphabetical (Z-A)
Filter:
All Topic Review Biography Peer Reviewed Entry Video Entry
Topic Review
CAR NK Cell Therapy for Metastatic Melanoma
Melanoma is among the most lethal forms of cancer, accounting for 80% of deaths despite comprising just 5% of skin cancer cases. Treatment options remain limited due to the genetic and epigenetic mechanisms associated with melanoma heterogeneity that underlie the rapid development of secondary drug resistance. For this reason, the development of novel treatments remains paramount to the improvement of patient outcomes. Although the advent of chimeric antigen receptor-expressing T (CAR-T) cell immunotherapies has led to many clinical successes for hematological malignancies, these treatments are limited in their utility by their immune-induced side effects and a high risk of systemic toxicities. CAR natural killer (CAR-NK) cell immunotherapies are a particularly promising alternative to CAR-T cell immunotherapies, as they offer a more favorable safety profile and have the capacity for fine-tuned cytotoxic activity. 
  • 551
  • 06 Dec 2023
Topic Review
Allogeneic CAR-T Therapy Technologies
Chimeric antigen receptor (CAR) T-cell therapy has become a real treatment option for patients with B-cell malignancies, while multiple efforts are being made to extend this therapy to other malignancies and broader patient populations. However, several limitations remain, including those associated with the time-consuming and highly personalized manufacturing of autologous CAR-Ts. Technologies to establish “off-the-shelf” allogeneic CAR-Ts with low alloreactivity are currently being developed, with a strong focus on gene-editing technologies. Although these technologies have many advantages, they have also strong limitations, including double-strand breaks in the DNA with multiple associated safety risks as well as the lack of modulation. As an alternative, non-gene-editing technologies provide an interesting approach to support the development of allogeneic CAR-Ts in the future, with possibilities of fine-tuning gene expression and easy development.
  • 539
  • 18 Jan 2024
Topic Review
Nanosilicate-Polysaccharide Composite Hydrogels for Bone Scaffolds
The revolutionary technology of 3D printing has emerged, allowing us to create realistic models of bones known as anthropomorphic phantoms. These phantoms mimic the spatial, physical, and biological characteristics of bone tissue, enabling us to study and develop innovative techniques in various scientific disciplines. Nanosilicate-polysaccharide composite hydrogels are a well-studied class of materials in regenerative medicine that combine good 3D printability, staining, and biological properties, making them an excellent candidate material for complex bone scaffolds.
  • 537
  • 25 Jul 2023
Topic Review
Application of HS Containing Biomatrices for Neural Repair
The fine structure (sulfation position and density) of the HS side chains of perlecan is an important regulatory determinant in the differentiation of pluripotent stem cells in the niche environment in neural tissues. Interaction of HS with growth factors (FGF-2) and morphogens (Wnt, SHh) is also essential for the long-term viability of recycling stem cells and the proliferation and differentiation of stem cells that have escaped from quiescent recycling and along with interactions with niche ECM components regulates the development of stem cell lineages that attain migratory properties facilitating their participation in neural repair processes. The expression of HS biosynthetic enzymes in the niche and tissue environments also have important roles in determining the fine structure of HS and how it exerts these effects spatially and temporally in tissue development and neural repair processes and also has roles in the determination of synaptic specificity, axonal guidance, synapse development and synapse function.
  • 535
  • 18 May 2022
Topic Review
Nanoscale Materials for Scaffold Structure and Function
Bone regeneration and repair are complex processes with the potential of added complications, like delayed repair, fracture non-union, and post-surgical infections. These conditions remain a challenge globally, pressurizing the economy and patients suffering from these conditions. Applications of nanotechnology (NBT) in the field of medicine have provided a medium for several approaches to support these global challenges. Tissue engineering is one such field that has been on the rise in the past through the utilization of NBT for addressing the challenges related to bone regeneration.
  • 534
  • 22 Nov 2023
Topic Review
The Role of MicroRNA 21 in Osteogenesis
MicroRNAs are short, single-stranded ribonucleic acids expressed endogenously in the body to regulate gene expression at the post-translational level, with exogenous microRNA offering an attractive approach to therapy. Among the myriad microRNA candidates involved in controlling bone homeostasis and remodeling, microRNA 21 (miR21) is the most abundant. 
  • 500
  • 26 Jul 2023
Topic Review
Human Adipose Stem Cells in Bone Tissue Engineering
Adipose stem cells (ASCs) have multilineage differentiation capacity and hold great potential for regenerative medicine. Compared to bone marrow-derived mesenchymal stem cells (bmMSCs), ASCs are easier to isolate from abundant sources with significantly higher yields. It is generally accepted that bmMSCs show age-related changes in their proliferation and differentiation potentials, whereas this aspect is still controversial in the case of ASCs.
  • 478
  • 17 Feb 2024
Topic Review
Cell Cultures in the Autoimmune Connective Tissue Diseases
Cell cultures are an important part of the research and treatment of autoimmune connective tissue diseases. By culturing the various cell types involved in autoimmune connective tissue diseases (ACTDs), researchers are able to broaden the knowledge about these diseases that, in the near future, may lead to finding cures. Fibroblast cultures and chondrocyte cultures allow scientists to study the behavior, physiology and intracellular interactions of these cells.
  • 472
  • 24 Nov 2023
Topic Review
DMD and Human Induced Pluripotent Stem Cells
The development of somatic cell reprograming technology has enabled generation of human induced pluripotent stem cells (hiPSCs) which can be differentiated into different cell types. This technology provides a potentially endless pool of human cells for research. Furthermore, hiPSCs can be generated from patients, thus providing patient-specific cells and enabling research tailored to different mutations.
  • 457
  • 07 Jun 2023
Topic Review
Extracellular Vesicles in Myocardial Injury and Healing Response
Increased prevalence of cardiovascular disease and potentially life-threatening complications of myocardial infarction (MI) has led to emerging therapeutic approaches focusing on myocardial regeneration and restoration of physiologic function following infarction. Extracellular vesicle (EV) technology has gained attention owing to the biological potential to modulate cellular immune responses and promote the repair of damaged tissue. Also, EVs are involved in local and distant cellular communication following damage and play an important role in initiating the repair process. Vesicles derived from stem cells and cardiomyocytes (CM) are of particular interest due to their ability to promote cell growth, proliferation, and angiogenesis following MI. 
  • 454
  • 02 Nov 2023
Topic Review
Visualizing Collagen Tissue Microarchitecture Using Contrast-Enhanced MicroCT
Micro-computed tomography (microCT) is a common tool for the visualization of the internal composition of organic tissues. Collagen comprises approximately 25–35% of the whole-body protein content in mammals, and the structure and arrangement of collagen fibers contribute significantly to the integrity of tissues. Collagen type I is also frequently used as a key structural component in tissue-engineered and bioprinted tissues. However, the imaging of collagenous tissues is limited by their inherently low X-ray attenuation, which makes them indistinguishable from most other soft tissues. An imaging contrast agent that selectively alters X-ray attenuation is thus essential to properly visualize collagenous tissue using a standard X-ray tube microCT scanner.  The entry provides basic understanding of the physical and chemical aspects of contrast agents that are specific for collagen and some of the key biological factors in selecting these agents for microCT.
  • 444
  • 18 Jul 2024
Topic Review
Tissue Engineering for Cancer Metastasis Therapeutics
Tissue engineering is a promising field for regenerative medicine that is likely to be able to provide rehabilitation procedures to patients who have undergone surgeries, such as mastectomy and other reconstructive procedures. Another important use of tissue engineering has emerged recently that involves the development of realistic and robust in vitro models of cancer metastasis, to aid in drug discovery and new metastasis therapeutics, as well as evaluate cancer biology at metastasis.
  • 437
  • 05 Mar 2024
Topic Review
Small Angle Neutron Scattering on Nanostructured Polysaccharide Materials
Polysaccharide materials and biomaterials gain the focus of intense research owing to their great versatility in chemical structures and modification possibilities, as well as their biocompatibility, degradability, and sustainability features.
  • 428
  • 28 Feb 2024
  • Page
  • of
  • 14
Academic Video Service