Sort:
Show:
Page Size:
Topic review
Updated time: 24 Sep 2021
Submitted by: Giuseppina Basta
Definition: The interaction between the membrane spike (S) protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the transmembrane angiotensin-converting enzyme 2 (ACE2) receptor of the human epithelial host cell is the first step of infection, which has a critical role for viral pathogenesis of the current coronavirus disease-2019 (COVID-19) pandemic.
Unfold
Topic review
Updated time: 03 Jun 2021
Submitted by: Le Minh Tu Phan
Definition: COVID-19 viral disease is officially global pandemic, currently accounting for the highest number of deaths worldwide. Special screening is extremely important as an effective way to monitor and manage the pandemic before reaching herb immunity through effective vaccination against SARS-CoV-2. A rapid population control task for COVID-19 has been documented using innovative methods in biosensor development. Biosensors are selected as promising detection devices with enormous potential as point-of-care (POC) tools to confirm the SARS-CoV-2 infection. Timely testing also helps to effectively allocate medical resources and save time for frontline medical staff. Hence, simple, rapid, cost-effective, and accessible detection techniques as POC diagnostics for large-scale screening and field testing of SARS-CoV-2 infection is important and should urgently be expedited to control the rapid and contagious spread of COVID-19.
Entry Collection : COVID-19
Unfold
Topic review
Updated time: 21 Apr 2021
Submitted by: Ahlem Teniou
Definition: To date, six human coronaviruses have been identified: α-coronaviruses (HCoVs-NL63, HCoVs-229E), β-coronaviruses (HCoVs-OC43, HCoVs-HKU1), severe acute respiratory syndrome-CoV (SARS-CoV), and Middle East respiratory syndrome-CoV (MERS-CoV). After the SARS-CoV-1 epidemic, the world is living a new threat to human health since December 2019—the SARS-CoV-2 or the COVID-19 pandemic. The emergence of the novel coronavirus is associated with an atypical pneumonia that has led to 90,176,569 infections and 1,936,617 deaths worldwide, as of 10 January 2021. Structurally, SARS-CoV-2 is an enveloped RNA(Ribonucleic acid) virus comprising a spike protein (S), a hemagglutinin-esterase dimer (HE), a membrane glycoprotein (M), an envelope protein (E), and a nucleocapsid protein (N). It has been demonstrated that the mechanism of the viral infection requires angiotensin-converting enzyme 2 (ACE2) binding to the protein S with high affinity. Highly expressed in the endothelial cells of the cardiovascular system and kidneys, this human receptor is used by the virus as an entry to invade target cells. Currently, immunoassays are the most popular diagnostic tools available in the market and used in medical structures. Basically, these methods use antibodies as bioreceptors targeting capsid proteins or whole viruses. In serological testing, capsid proteins are used as viral antigens to bind the immunoglobulins generated by the patient against the pathogen. Antibodies are usually obtained from animal immunization with N, S, or E protein or from the blood samples of patients who are infected [14]. In addition to the commercialized ELISA kits and rapid tests, several research reports have described novel immunoassays and immunosensors for coronavirus detection. We discuss in this part the principle of these methods as well as the most important results.
Entry Collection : COVID-19
Unfold
Topic review
Updated time: 06 Jun 2021
Submitted by: Jin-Woo Kim
Definition: The intervertebral disc (IVD) is a complex joint structure comprising three primary components—namely, nucleus pulposus (NP), annulus fibrosus (AF), and cartilaginous endplate (CEP). The IVD retrieves oxygen from the surrounding vertebral body through CEP by diffusion and likely generates ATP via anaerobic glycolysis. IVD degeneration is characterized by a cascade of cellular, compositional, structural changes. With advanced age, pronounced changes occur in the composition of the disc extracellular matrix (ECM). NP and AF cells in the IVD possess poor regenerative capacity compared with that of other tissues. Hypoxia-inducible factor (HIF) is a master transcription factor that initiates a coordinated cellular cascade in response to a low oxygen tension environment, including the regulation of numerous enzymes in response to hypoxia. HIF-1α is essential for NP development and homeostasis and is involved in various processes of IVD degeneration process, promotes ECM in NP, maintains the metabolic activities of NP, and regulates dystrophic mineralization of NP, as well as angiogenesis, autophagy, and apoptosis during IVD degeneration. HIF-1α may, therefore, represent a diagnostic tool for early IVD degeneration and a therapeutic target for inhibiting IVD degeneration
Unfold
Topic review
Updated time: 22 Apr 2021
Submitted by: Michael Vaeggemose
Definition: MR spectroscopy (MRS) and spectroscopic imaging (MRSI) obtain metabolic information noninvasively from nuclei spins. For in vivo applications, common MR-active nuclei are protons (1H), phosphorus (31P), carbon (13C), sodium (23Na), and xenon (129Xe). The most common are protons due to their high gyromagnetic ratio and natural abundance in the human body. Since most metabolic processes involve carbon, 13C spectroscopy is a valuable method to measure in vivo metabolism noninvasively [1,2,3]. 13C spectra are characterized by a large spectral range (162–185 ppm), narrow line widths, and low sensitivity due to the low gyromagnetic ratio (a quarter as compared to protons) and natural abundance of 1.1% in vivo. However, the sensitivity can be increased with the use of 13C-enriched agents and by hyperpolarization.Hyperpolarized (HP) 13C MRI is a method that magnetizes 13C probes to dramatically increase signal as compared to conventional MRI [3]. Metabolic and functional HP 13C MRI is a promising diagnostic tool for detecting disorders linked to altered metabolism such as cancer, diabetes, and heart diseases [4], increasing sensitivity sufficiently to map metabolic pathways in vivo without the use of ionizing radiation, as in positron emission tomography (PET) imaging. Metabolic imaging using HP 13C compounds has been translated successfully into single-organ examinations in healthy controls and various patient populations.
Entry Collection : Nuclear Magnetic Resonance
Unfold
Topic review
Updated time: 14 Sep 2021
Definition: Inappropriate laboratory test selection in the form of overutilization as well as underutilization frequently occurs despite available guidelines. There is broad approval among laboratory specialists as well as clinicians that demand management strategies are useful tools to avoid this issue. Most of these tools, which may be adopted to local settings, are based on automated algorithms or other types of machine learning. We believe that artificial intelligence may help to further improve these available tools.
Unfold
Topic review
Updated time: 17 Mar 2021
Submitted by: Kacper Nijakowski
Definition: The course of periodontal disease is affected by many factors; however, the most significant are the dysbiotic microflora, showing different pathogenicity levels. Rapid colonization in the subgingival environment can radically change the clinical state of the periodontium. This study aims to present an innovative technique of loop-mediated isothermal amplification for rapid panel identification of bacteria in periodontal diseases. The decisive advantage of the loop-mediated isothermal amplification (LAMP) technique in relation to molecular methods based on the identification of nucleic acids (such as polymerase chain reaction (PCR or qPCR) is the ability to determine more pathogens simultaneously, as well as with higher sensitivity. In comparison with classical microbiological seeding techniques, the use of the LAMP method shortens a few days waiting time to a few minutes, reducing the time necessary to identify the species and determine the number of microorganisms. The LAMP technology requires only a small hardware base; hence it is possible to use it in outpatient settings. The developed technique provides the possibility of almost immediate assessment of periodontal status and, above all, risk assessment of complications during the treatment (uncontrolled spread of inflammation), which can certainly be of key importance in clinical work.
Unfold
Topic review
Updated time: 02 Aug 2021
Submitted by: Jun Chen
Definition: Wearable bioelectronics has received tremendous attention worldwide due to its great a potential for predictive medical modeling and allowing for personalized point-of-care-testing (POCT). Since the distribution of sweat glands in the human body is rich (>100 glands/cm2) and the sweat contains abundant biochemical compounds, human sweat has become a promising bio-fluid for non-invasive biosensing. Since nearly every portion of human skin has eccrine glands, sweat is readily available without the use of needles or other invasive devices. Iontophoresis sweat can be extracted from anywhere which is not possible in any other case of bio-fluids. Moreover, analytes including ions, metabolites, acids, hormones, and small proteins and peptides are partitioned into the sweat. Sweat also contains various electrolytes (such as potassium, sodium, chloride, and calcium), nitrogen-containing compounds (such as urea and amino acids), as well as metabolites such as glucose, lactic acid, and uric acid, along with xenobiotics such as drugs and ethanol.
Unfold
Topic review
Updated time: 05 May 2021
Submitted by: Muhammad Ali BUTT
Definition: The optical biomedical sensor industry has grown enormously over the past few years and is expected to grow more in the forthcoming days because of the extensive need for point-of-care testing devices. Researchers all over the world are working on the implementation of highly sensitive, reliable, portable, and inexpensive biomedical appliances, which can revolutionize this market. Optical biosensing is a vast topic, and numerous optical sensing techniques have been presented over the years.These techniques and corresponding technological platforms enabling the manufacturing of optical biomedical sensors of different types.the most representative cases are integrated optical biosensors, vertical grating couplers, plasmonic sensors, surface plasmon resonance optical fiber biosensors, and metasurface biosensors, Photonic crystal-based biosensors, thin metal films biosensors, and fiber Bragg grating biosensors,these optical biomedical sensors might enable the identification of symptoms of deadly illnesses in their early stages; thus, potentially saving a patient’s life.
Unfold
Topic review
Updated time: 05 Jul 2021
Submitted by: Chao-Min Cheng
Definition: As a highly influential physiological factor, pH may be leveraged as a tool to diagnose physiological state. It may be especially suitable for diagnosing and assessing skin structure and wound status. Multiple innovative and elegant smart wound dressings combined with either pH sensors or drug control-released carriers have been extensively studied. Increasing our understanding of the role of pH value in clinically relevant diagnostics should assist clinicians and improve personal health management in the home. In this review, we summarized a number of articles and discussed the role of pH on the skin surface as well as the factors that influence skin pH and pH-relevant skin diseases, but also the relationship of skin pH to the wound healing process, including its influence on the activity of proteases, bacterial enterotoxin, and some antibacterial agents.
Unfold
  • Page
  • of
  • 2