The advent of biopharmaceuticals in current medicine brought enormous benefits to the treatment of life-threatening human diseases (e.g., cancer, diabetes and neurodegenerative disorders), and improved the well-being of many people worldwide. The global portfolio of these therapeutic products include proteins and antibodies, nucleic acids, and cell-based products, and continues to expand at a rapid pace - approvals in the period 2015-2018 essentially double the typical five-yearly historical approval pace (G. Walsh, Nat. Biotechnol., 36:1136-1145, 2018) -, representing a significant share of the entire market of pharmaceuticals.

Innovation in the (bio)pharmaceutical industry has been driven towards the development of cost-effective manufacturing processes, envisaging the delivery of products in high quantity, with superior quality (purity), and high specificity, with the ultimate goal of benefiting patients. Progress in this direction have resulted from the application of novel technologies in the upstream stage (high-throughput, single-use devices, statistical optimization of media and fermentation conditions, QbD, and continuous processing), while at the downstream level, chromatography has evolved through the development of new resins and ligands, coupled with advances in process modelling, operating and control strategies.

An emerging trend is the application of alternative solvents such as ionic liquids and deep eutectic solvents, in which their structure and physicochemical properties can be tuned to address unmet needs in (bio)pharmaceutical research. These compounds may be derived from natural and reneawable sources and hold great promise in the development of efficient, sustainable and cost-effective biopharmaceuticals purification processes.

This Entry Collection aims to provide the latest progresses achieved in pharmaceuticals bioprocessing. We welcome submissions of original research, comprehensive reviews and perspectives, including, but not limited, to the following fields:

- Upstream processing (genetic engineering, systems biology, difficult-to-express proteins, expression conditions, Quality by Design approaches, process analytical technologies);

- Chromatographic purification methods (process modelling and control, continuous bioprocessing, design and characterization of resins and ligands, new formats);

- Alternative purification methods (aqueous biphasic systems, filtration, crystallization, precipitation);

- Application of neoteric solvents in upstream and downstream stages;

- Analytical characterization of biopharmaceuticals (stability, post-translational modifications, biological activity, immunogenicity); 

Expand All
Topic Review
Plasmid DNA for Therapeutic Applications in Cancer
Plasmid DNA can be developed to treat different diseases, such as infections and cancer. In most cancers, the immune system is limited or suppressed, allowing cancer cells to grow. DNA vaccination has demonstrated its capacity to stimulate the immune system to fight against cancer cells.
  • 48
  • 15 Sep 2022
Topic Review
Reprogramming of α-Cells into Insulin Producing Cells
Numerous cell sources are being explored to replenish functional β-cell mass since the proof-of -concept for cell therapy of diabetes was laid down by transplantation of islets. Various strategies that aim to generate bone fide insulin producing cells are explored.  In particular on reprogramming and especially on α-cells conversion into insulin producing cells are focused here. A logical place to begin with for generating β-cells is to utilise the plasticity of closely related endoderm derived cell types like pancreatic non-β-cells and coaxing them to adopt a β-cell phenotype. Given the close ontogenetic relationship, functional similarity and dependency among these cells, the potential for interconversion is unequivocal. Phenotypic plasticity between pancreatic α-cells and β-cells is notably pronounced.
  • 91
  • 16 Sep 2022
Topic Review
Polymers for Pharmaceutical Coating
Coating the solid dosage form, such as tablets, is considered common, but it is a critical process that provides different characteristics to tablets. It increases the value of solid dosage form, administered orally, and thus meets diverse clinical requirements. As tablet coating is a process driven by technology, it relies on advancements in coating techniques, equipment used for the coating process, evaluation of coated tablets, and coated material used. Although different techniques were employed for coating purposes, which may be based on the use of solvents or solvent-free, each of the methods used has its advantages and disadvantages, and the techniques need continued modification too. During the process of film coating, several inter-and intra-batch uniformity of coated material on the tablets is considered a critical point that ensures the worth of the final product, particularly for those drugs that contain an active medicament in the coating layer. Meanwhile, computational modeling and experimental evaluation were actively used to predict the impact of the operational parameters on the final product quality and optimize the variables in tablet coating. The efforts produced by computational modeling or experimental evaluation not only save cost in optimizing the coating process but also saves time.
  • 52
  • 13 Sep 2022
Topic Review
Anticancer Secondary Metabolites of Astragalus Species
Some of the most effective anticancer compounds are still derived from plants since the chemical synthesis of chiral molecules is not economically efficient. Rapid discovery of lead compounds with pronounced biological activity is essential for the successful development of novel drug candidates. The genus Astragalus L. is the largest in the family Fabaceae (syn. Leguminosae), with more than 3500 species. Astragalus, excluding Astracantha (formerly Astragalus subgenus Tragacantha), has a world total of ca. 2500 species, of which ca. 500 are in the Americas. Many of the species have conservation status “vulnerable” or “critically endangered”.
  • 61
  • 09 Sep 2022
Topic Review
Pharmacological Effects of Houttuynia cordata Thunb (H. cordata)
Houttuynia cordata Thunb (H. cordata) is a rhizomatous, herbaceous, and perennial plant widely distributed in Asia. It has multiple chemical constituents, such as alkaloids, essential oils, phenolic acids, and flavonoids used against various health problems. The essential oils and flavonoids are the main components of H. cordata that play an essential role in disease treatment and traditional health care. Moreover, the leaves and stems of H. cordata have a long medicinal history in China. In addition, H. cordata is used against several health issues, such as cold, cough, fever, pneumonia, mumps, and tumors, due to its anti-inflammatory, anti-bacterial, anti-viral, anti-oxidant, and anti-tumor effects.
  • 41
  • 07 Sep 2022
Topic Review
Plant-Derived Type I Ribosome Inactivating Protein-Based Targeted Toxins
Targeted toxins (TT) for cancer treatment are a class of hybrid biologic comprised of a targeting domain coupled chemically or genetically to a proteinaceous toxin payload. The targeting domain of the TT recognises and binds to a defined target molecule on the cancer cell surface, thereby delivering the toxin that is then required to internalise to an appropriate intracellular compartment in order to kill the target cancer cell.
  • 44
  • 05 Sep 2022
Topic Review
Therapeutic Potential of Intrabodies for Cancer Immunotherapy
Tumor cells are characterized by overexpressed tumor-associated antigens or mutated neoantigens, which are expressed on the cell surface or intracellularly. One strategy of cancer immunotherapy is to target cell-surface-expressed tumor-associated antigens (TAAs) with therapeutic antibodies. Intrabodies are suitable to knockdown TAAs and neoantigens without off-target effects. Intrabodies can now be selected against virtually any protein inside the cell. RNA sequencing and proteome analysis of single tumor cells combined with computational methods is bringing forward the identification of new neoantigens for the selection of anti-cancer intrabodies, which can be easily performed using phage display antibody repertoires. Anti-cancer intrabodies demonstrated tumor growth inhibition in appropriate xenograft tumor mouse models. At the moment, the biggest challenge in translating TAA/neoantigen-directed intrabodies into the clinic is the specific targeting of the intrabodies to the tumor cells. The promising development of tumor-specific lipid nanoparticles which could be embedded with an mRNA transgene or new capsid-modified and tumor-specific recombinant AAVs should enable tumor-cell-specific intrabody transfection/transduction in cancer patients and may finally bring intrabodies into the clinic.
  • 75
  • 02 Sep 2022
Topic Review
Digital Pills with Ingestible Sensors
Digital pills contain integrated sensors that allow monitoring of the course of pharmacotherapy through an interaction with the software of, e.g., tablets and smartphones. Such monitoring is of great importance, as low patient compliance (medication opt-out) is a major challenge for all areas of medicine.
  • 64
  • 01 Sep 2022
Topic Review
Green Tea Catechins in Chemoprevention for Prostate Cancer
Human PCa is a complex heterogeneous disease. The central driving forces of prostate carcinogenesis include acquisitions of diverse sets of hallmark capabilities, aberrant functioning of androgen receptor signaling, deregulation of vital cell physiological processes, inactivation of tumor-suppressive activity, and disruption of prostate gland-specific cellular homeostasis. Green tea is known for its health benefits deriving from molecules called green tea catechins (GTCs). GTCs have been demonstrated to influence molecular pathways to halt the progression of prostate cancer (PCa) and may be of particular benefit to men with low-risk PCa who are placed on active surveillance. Administering GTCs may provide patients an opportunity to be actively engaged in their treatment and help prevent cancer progression. Importantly, the trillions of microbes in the gut (the gut microbiome) metabolize GTCs, making them more accessible to the body to exert their health effects. Additionally, the gut microbiome influences multiple other processes likely involved in PCa progression, including regulating inflammation, hormones, and other known/unknown pathways. 
  • 44
  • 01 Sep 2022
Topic Review
Trending Methods for Rapid Cannabinoids Detection
Roadside testing of illicit drugs such as tetrahydrocannabinol (THC) requires simple, rapid, and cost-effective methods. The need for non-invasive detection tools has led to the development of selective and sensitive platforms, able to detect phyto- and synthetic cannabinoids by means of their main metabolites in breath, saliva, and urine samples. One may estimate the time passed from drug exposure and the frequency of use by corroborating the detection results with pharmacokinetic data. Modified surfaces can also act as filters that allow only the target analyte to participate in the electrode reaction. In the case of cannabinoids, as in the case of other drugs, the investigation of the mechanism of action within the organism is the basis of biosensor development.
  • 99
  • 30 Aug 2022
  • Page
  • of
  • 38