Summary

Neurodegeneration refers to the progressive loss of neuron structure or function, which may eventually lead to cell death. Many neurodegenerative diseases, such as amyotrophic lateral sclerosis, multiple sclerosis, Parkinson's disease, Alzheimer's disease, Huntington's disease and prion disease, are the results of neurodegenerative processes. Neurodegeneration can be found in many different levels of neuronal circuits in the brain, from molecules to systems. Since there is no known method to reverse the progressive degeneration of neurons, these diseases are considered incurable. Biomedical research has revealed many similarities between these diseases at the subcellular level, including atypical protein assembly (such as protein diseases) and induction of cell death. These similarities indicate that progress in the treatment of one neurodegenerative disease may also improve other diseases. This collection of entries aims to collect various medical research results related to neurodegeneration. We invite researchers to share their new results and ideas related to neurodegeneration.

Expand All
Entries
Topic Review
Ageing, Microglia and Mitochondria in Parkinson’s Disease Neurodegeneration
Parkinson’s disease (PD) is an age-related chronic, progressive, multi-system, neurodegenerative disease with an incidence second only to Alzheimer’s disease. A PD diagnosis requires the presence of two core motor features, including diminished movement (bradykinesia), tremor, muscle rigidity, or postural instability, difficulty initiating voluntary movement (akinesia), involuntary eye movements, and blinking, which can take up to 15-20 years to become evident. There is now an increasing level of evidence linking mitochondrial dysfunction, including elevated oxidative stress, reactive oxygen species (ROS) and impaired cellular energy production, with the overactivation and escalation of a microglial mediated proinflammatory immune response, as naturally occurring and damaging interlinked bidirectional and self-perpetuating cycles that share common pathological processes in aging and PD. This research proposes that both chronic inflammation, microglial activation and neuronal mitochondrial impairment should be considered as concurrently influencing each other along a continuum, rather than as separate and isolated linear metabolic events that affect specific aspects of neural processing and brain function.
  • 540
  • 18 Jul 2023
Topic Review
Focused Ultrasound-Mediated Blood–Brain Barrier Opening for Neurological Disorders
Several therapeutic agents for neurological disorders are usually not delivered to the brain owing to the presence of the blood–brain barrier (BBB), a special structure present in the central nervous system (CNS). Focused ultrasound (FUS) combined with microbubbles can reversibly and temporarily open the BBB, enabling the application of various therapeutic agents in patients with neurological disorders. 
  • 309
  • 31 May 2023
Topic Review
Voltage-Gated Sodium Channel in Neurodegenerative Diseases
The pore-forming subunits (α subunits) of voltage-gated sodium channels (VGSC) are encoded in humans by a family of nine highly conserved genes. Among them, SCN1A, SCN2A, SCN3A, and SCN8A are primarily expressed in the central nervous system. The encoded proteins Nav1.1, Nav1.2, Nav1.3, and Nav1.6, respectively, are important players in the initiation and propagation of action potentials and in turn of the neural network activity. In the context of neurological diseases, mutations in the genes encoding Nav1.1, 1.2, 1.3 and 1.6 are responsible for many forms of genetic epilepsy and for Nav1.1 also of hemiplegic migraine. Conversely, VGSCs seem to have a modulatory role in the most common neurodegenerative diseases such as Alzheimer’s, where SCN8A expression has been shown to be negatively correlated with disease severity.
  • 367
  • 30 May 2023
Topic Review
Molecular Mechanism of Alzheimer’s Disease
Alzheimer’s disease (AD) is the most prominent neurodegenerative disorder in the aging population. It is characterized by cognitive decline, gradual neurodegeneration, and the development of amyloid-β (Aβ)-plaques and neurofibrillary tangles, which constitute hyperphosphorylated tau. The early stages of neurodegeneration in AD include the loss of neurons, followed by synaptic impairment. Since the discovery of AD, substantial factual research has surfaced that outlines the disease’s causes, molecular mechanisms, and prospective therapeutics, but a successful cure for the disease has not yet been discovered. This may be attributed to the complicated pathogenesis of AD, the absence of a well-defined molecular mechanism, and the constrained diagnostic resources and treatment options. 
  • 652
  • 25 May 2023
Topic Review
TDP-43 Pathobiology Informed Biomarker Development
TDP-43 belongs to a family of heterogeneous nuclear ribonucleoproteins (hnRNP). Structurally, TDP-43 consists of a structured N-terminal domain (NTD) involved in physiological self-oligomerization, followed by two tandem RNA-recognition motifs (RRM), which bind to certain nuclear transcripts and therefore regulate important DNA/RNA metabolism functions.
  • 433
  • 22 May 2023
Topic Review
Pharmacological Potential of 3-Benzazepines in NMDAR-Linked Pathophysiological Processes
The number of N-Methyl-D-aspartate receptor (NMDAR) linked neurodegenerative diseases such as Alzheimer’s disease and dementia is constantly increasing. This is partly due to demographic change and presents new challenges to societies. To date, there are no effective treatment options. Medications are nonselective and can lead to unwanted side effects in patients. A promising therapeutic approach is the targeted inhibition of NMDARs in the brain. NMDARs containing different subunits and splice variants display different physiological properties and play a crucial role in learning and memory, as well as in inflammatory or injury processes. They become overactivated during the course of the disease, leading to nerve cell death. 
  • 277
  • 19 May 2023
Topic Review
Ontogeny of Central Nervous System Border-Associated Macrophages
Being immune privileged, the central nervous system (CNS) is populated by unique parenchymal and non-parenchymal tissue-resident macrophages, namely, microglia and border-associated macrophages (BAMs), respectively. BAMs are found in the choroid plexus, meningeal and perivascular spaces, playing critical roles in maintaining CNS homeostasis while being phenotypically and functionally distinct from microglial cells. Although the ontogeny of microglia has been largely determined, BAMs need comparable scrutiny as they have been discovered and have not been thoroughly explored. Shedding light on the molecular cues and drivers orchestrating BAM generation is essential for delineating their cellular identity. BAMs are receiving more attention since they are gradually incorporated into neurodegenerative and neuroinflammatory disease evaluations. Understanding the ontogeny of BAMs and their involvement in CNS diseases paves the way for targeted therapeutic strategies and precision medicine.
  • 315
  • 17 May 2023
Topic Review
Sirt3 and Neurodegenerative Diseases
An NAD+-dependent deacetylase called Sirtuin 3 (Sirt3) is involved in the metabolic processes of the mitochondria, including energy generation, the tricarboxylic acid cycle, and oxidative stress. Sirt3 activation can slow down or prevent mitochondrial dysfunction in response to neurodegenerative disorders, demonstrating a strong neuroprotective impact. The mechanism of Sirt3 in neurodegenerative illnesses has been elucidated over time; it is essential for neuron, astrocyte, and microglial function, and its primary regulatory factors include antiapoptosis, oxidative stress, and the maintenance of metabolic homeostasis. Sirt3 plays a key part in the central nervous system (CNS)  and participates in the regulation of the physiological and pathological functions of various nerve cells. Many of these mechanisms are closely related to neurodegeneration, implying that Sirt3 is a key regulatory molecule in neurodegenerative diseases.
  • 406
  • 15 May 2023
Topic Review
Lipid*omic*s in Rare Diseases
Lipids are defined as hydrophobic or amphipathic small molecules with a high solubility in organic solvents. Following water, lipids are the second most abundant components in mammalian cells. The lipidome comprises tens of thousands of different species, which are broadly subdivided into simple lipids, e.g., fatty acids (FA), or complex lipids, e.g. sphingolipids (SL), acylglycerols or phospholipids (PL). Lipids are crucial for structural compartmentalization by being major constituents of the semi-permeable plasma membranes formed by a lipid bilayer, majorly composed of PL and proteins.  Lipidomic changes in rare and undiagnosed diseases are often minor, consisting of complex patterns of subtle changes of a distinct set of lipids, which can be easily identified by lipidomics analysis.
  • 478
  • 12 May 2023
Topic Review
α-Synuclein Epigenetic Regulation
Synucleinopathies are a group of neurodegenerative diseases with common pathological lesions associated with the excessive accumulation and abnormal intracellular deposition of toxic species of α-synuclein. The shared clinical features are chronic progressive decline of motor, cognitive, and behavioral functions. These disorders include Parkinson’s disease, dementia with Lewy body, and multiple system atrophy. Vigorous research in the mechanisms of pathology of these illnesses is currently under way to find disease-modifying treatment and molecular markers for early diagnosis. α-Synuclein is a prone-to-aggregate, small amyloidogenic protein with multiple roles in synaptic vesicle trafficking, neurotransmitter release, and intracellular signaling events. Its expression is controlled by several mechanisms, one of which is epigenetic regulation.
  • 326
  • 10 May 2023
  • Page
  • of
  • 49
>>