Summary

Neurodegeneration refers to the progressive loss of neuron structure or function, which may eventually lead to cell death. Many neurodegenerative diseases, such as amyotrophic lateral sclerosis, multiple sclerosis, Parkinson's disease, Alzheimer's disease, Huntington's disease and prion disease, are the results of neurodegenerative processes. Neurodegeneration can be found in many different levels of neuronal circuits in the brain, from molecules to systems. Since there is no known method to reverse the progressive degeneration of neurons, these diseases are considered incurable. Biomedical research has revealed many similarities between these diseases at the subcellular level, including atypical protein assembly (such as protein diseases) and induction of cell death. These similarities indicate that progress in the treatment of one neurodegenerative disease may also improve other diseases. This collection of entries aims to collect various medical research results related to neurodegeneration. We invite researchers to share their new results and ideas related to neurodegeneration.

Expand All
Entries
Topic Review
Parkinson’s Disease and Its Treatment
Parkinson’s disease (PD) is a progressive neurodegenerative condition, most often seen among elderly individuals worldwide. PD symptoms include dysfunctions of the somatomotor system, including rigidity, bradykinesia, postural instability, gait dysfunction, and tremors. Disease progression leads to progressive degeneration of the nigrostriatal dopaminergic pathway, leading to significant neuron loss in substantia nigra pars compacta (SNpc) neurons and depletion of dopamine (DA). Non-motor dysfunctions such as dementia, hyposmia, and gastrointestinal abnormalities often accompany disease progression.
  • 287
  • 06 Jul 2023
Topic Review
Effects of Capsaicin on Alzheimer’s Disease
Alzheimer’s Disease (AD) is a progressive neurodegenerative disorder characterised by cognitive impairment, and amyloid-β plaques and neurofibrillary tau tangles at neuropathology. Capsaicin is a spicy-tasting compound found in chili peppers, with anti-inflammatory, antioxidant, and possible neuroprotective properties. Capsaicin intake has been associated with greater cognitive function in humans, and attenuating aberrant tau hyperphosphorylation in a rat model of AD.
  • 311
  • 03 Jul 2023
Topic Review
Dietetic Habits in Multiple Sclerosis
Multiple sclerosis (MS) is a disabling immune-mediated demyelinating neurodegenerative disease with an estimated prevalence of 1 in 1000 in populations of European descent. It primarily affects females (F:M = 2–3:1) mainly between the ages of 15 and 55 years. 
  • 374
  • 27 Jun 2023
Topic Review
High-Throughput Screening for Neurodegenerative Diseases
Neurodegenerative diseases (NDDs) are incurable and debilitating conditions that result in progressive degeneration and/or death of nerve cells in the central nervous system (CNS). High-throughput screening (HTS) has increasingly been used for novel drug discovery in the field of pharmaceutics replacing the traditional “trial and error” approach to identify therapeutic targets and validate biological effects. HTS involves assaying and screening a large number of biological effectors and modulators against designated and exclusive targets.
  • 321
  • 20 Jun 2023
Topic Review
The Automated Test of Embodied Cognition (ATEC)
The Automated Test of Embodied Cognition (ATEC) uses video administration of cognitively demanding physical tasks and motion capture technology to assess cognition in action. Embodied cognition is a radical departure from conventional approaches to cognitive assessment and is in keeping with contemporary neuroscience.
  • 376
  • 14 Jun 2023
Topic Review
Non-Vesicular Release of Alarmin Prothymosin α Complex
Nuclear protein prothymosin α (ProTα) is a unique member of damage-associated molecular patterns (DAMPs)/alarmins. ProTα prevents neuronal necrosis by causing a cell death mode switch in serum-starving or ischemic/reperfusion models in vitro and in vivo. The ANXA2 flop-out-type non-vesicular release of ProTα is a unique mechanism and, it looks distinct from known mechanisms through the membrane pores made of gasdermin D (GSDMD) and mixed-lineage kinase domain-like pseudokinase (MLKL) pores.
  • 320
  • 16 Jun 2023
Topic Review
Deep Learning Aided Neuroimaging for Brain Monitoring
Deep learning has shown tremendous potential in the field of neuroimaging and brain regulation. Neuroimaging techniques such as MRI, CT, PET/CT, EEG/MEG, optical imaging, and other imaging modalities generate large amounts of comprehensive and complex data, which can be challenging to analyze and interpret. Deep learning techniques such as convolutional neural networks (CNNs), recurrent neural networks (RNNs), and generative adversarial network (GAN) have been proven to be effective in extracting meaningful information from these data and transforming the neuroimaging from qualitative to quantitative imaging modality. The aforementioned information is merged with additional patient data and processed using advanced bioinformatics software to create models that could potentially enhance the accuracy in the diagnosis, prognosis, and prediction for brain monitoring and regulation.
  • 457
  • 07 Jun 2023
Topic Review
Animal Model Systems of Parkinson’s Disease
Parkinson's disease is an advancing condition characterized by different types of physical and mental impairments. The characteristic features of Parkinson's disease include the buildup of improperly folded protein known as α-synuclein as Lewy bodies, as well as the deterioration of dopamine-producing neurons in the substantia nigra pars compacta (SNc) region, which impacts the patient's motor functions. Significant studies have been conducted to investigate the use of animal models for Parkinson's disease.
  • 297
  • 05 Jun 2023
Topic Review
Role of Enteric Nervous System in Parkinson’s Disease
The enteric nervous system (ENS) is a nerve network composed of neurons and glial cells that regulates the motor and secretory functions of the gastrointestinal (GI) tract. There is abundant evidence of mutual communication between the brain and the GI tract. Dysfunction of these connections appears to be involved in the pathophysiology of Parkinson’s disease (PD). Alterations in the ENS have been shown to occur very early in PD, even before central nervous system (CNS) involvement. Post-mortem studies of PD patients have shown aggregation of α-synuclein (αS) in specific subtypes of neurons in the ENS. Subsequently, αS spreads retrogradely in the CNS through preganglionic vagal fibers to this nerve’s dorsal motor nucleus (DMV) and other central nervous structures.
  • 653
  • 02 Jun 2023
Topic Review
Neurodegeneration in Parkinson’s Disease
Investigations of the effect of antioxidants on idiopathic Parkinson’s disease have been unsuccessful because the preclinical models used to propose these clinical studies do not accurately represent the neurodegenerative process of the disease. Treatment with certain exogenous neurotoxins induces massive and extremely rapid degeneration; for example, MPTP causes severe Parkinsonism in just three days, while the degenerative process of idiopathic Parkinson´s disease proceeds over many years. The endogenous neurotoxin aminochrome seems to be a good alternative target since it is formed in the nigrostriatal system neurons where the degenerative process occurs.
  • 421
  • 01 Jun 2023
  • Page
  • of
  • 49
>>