Topic Review
Zoo Food Preparation and Presentation
From its foundations in agricultural science, zoo animal nutrition has developed into a biologically informed, evidence-based discipline. However, some facets of nutrition still make use of a more traditional approach, such as the field of zoo presentation. For example, it is common practice to prepare animal diets by chopping them into bite-size chunks, yet there is limited peer-reviewed evidence that explains the benefits and welfare implications of this practice. The chopping and placement of foods can alter desiccation rates, nutrient breakdown, and food contamination, so it is important to evaluate the implications of current practices. Here, the published literature on the behavioral impacts of different food presentation formats (such as clumped and scattered, and chopped and whole) is reviewed, with reference to a range of taxa. The current state of knowledge of the nutritional and microbiological effects of food presentation practices are also reviewed. Relevant research is available on the behavioral effects of some forms of zoo food presentation; however, relatively little research has been conducted on their nutrient composition effects or desiccation rates. Similarly, there are gaps in terms of the species that have been investigated, with a few mammalian taxa dominating the food presentation literature. Future research projects covering social, behavioral, and welfare impacts, and the nutritional and microbiological consequences of food presentation would further evidence-based zoo and aquarium management practices. Similarly, qualitative research surrounding keeper perception of food presentation formats would help to identify challenges and opportunities in this field.
  • 3.1K
  • 15 Oct 2020
Topic Review
Decarbonization in Shipping Industry
Decarbonization in Shipping Industry might be achieved through alternative fuels (nuclear, hydrogen, ammonia, methanol), renewable energy sources (biofuels, wind, solar), the maturity of technologies (fuel cells, internal combustion engines) as well as technical and operational strategies to reduce fuel consumption for new and existing ships (slow steaming, cleaning and coating, waste heat recovery, hull and propeller design).
  • 3.1K
  • 29 Jul 2021
Topic Review
Laser Forming Process
Laser forming is an emerging manufacturing process capable of producing either uncomplicated and complicated shapes by employing a concentrated heating source. The heat source movement creates local softening, and a plastic strain will be induced during the rise of temperature and the subsequent cooling. This contactless forming process may be used for the simple bending of sheets and tubes or fabrication of doubly-curved parts. Different studies have been carried out over recent years to understand the mechanism of forming and predicting the bending angle. The analysis of process parameters and search for optimized manufacturing conditions are among the most discussed topics. This review describes the main recent findings in the laser forming of single and multilayer sheets, composite and fiber-metal laminate plates, force assisted laser bending, tube bending by laser beam, the optimization technique implemented for process parameters selection and control, doubly-curved parts, and the analytical solutions in laser bending. The main focus is set to the researches published since 2015.
  • 3.1K
  • 21 Nov 2020
Topic Review
Yield (Engineering)
In materials science and engineering, the yield point is the point on a stress-strain curve that indicates the limit of elastic behavior and the beginning of plastic behavior. Below the yield point, a material will deform elastically and will return to its original shape when the applied stress is removed. Once the yield point is passed, some fraction of the deformation will be permanent and non-reversible and is known as plastic deformation. The yield strength or yield stress is a material property and is the stress corresponding to the yield point at which the material begins to deform plastically. The yield strength is often used to determine the maximum allowable load in a mechanical component, since it represents the upper limit to forces that can be applied without producing permanent deformation. In some materials, such as aluminium, there is a gradual onset of non-linear behavior, making the precise yield point difficult to determine. In such a case, the offset yield point (or proof stress) is taken as the stress at which 0.2% plastic deformation occurs. Yielding is a gradual failure mode which is normally not catastrophic, unlike ultimate failure. In solid mechanics, the yield point can be specified in terms of the three-dimensional principal stresses ([math]\displaystyle{ \sigma_1, \sigma_2 , \sigma_3 }[/math]) with a yield surface or a yield criterion. A variety of yield criteria have been developed for different materials.
  • 3.1K
  • 17 Oct 2022
Topic Review
Language Attrition
Language attrition is the loss of a first or second language or a portion of that language by either a community or an individual. Language attrition is related to multilingualism and language acquisition. Many factors are at play in learning (acquisition) and unlearning (loss) the first and second languages. This can be a simple reversal of learning. In other cases, the type and speed of attrition depends on the individual, also on his or her age and skill level. For the same second language, attrition has been affected differently depending on what is the dominant first language environment. In many cases, attrition could well be case-by-case. Those language learners motivated to keep their first and second languages may very well maintain it, although to do so will likely involve continuous study, or regular use of both.
  • 3.1K
  • 01 Dec 2022
Topic Review
Faster-Than-Light Communication
Superluminal communication is a hypothetical process in which information is sent at faster-than-light (FTL) speeds. The current scientific consensus is that faster-than-light communication is not possible, and to date it has not been achieved in any experiment. Under present knowledge superluminal communication is impossible because, in a Lorentz-invariant theory, it could be used to transmit information into the past. This contradicts causality and leads to logical paradoxes. A number of theories and phenomena related to superluminal communication have been proposed or studied, including tachyons, quantum nonlocality, and wormholes.
  • 3.1K
  • 19 Oct 2022
Topic Review
Bodhi
The English term enlightenment is the western translation of the abstract noun bodhi, (/ˈboʊdi/; Sanskrit: बोधि; Pali: bodhi), the knowledge or wisdom, or awakened intellect, of a Buddha. The verbal root budh- means "to awaken," and its literal meaning is closer to "awakening." Although the term buddhi is also used in other Indian philosophies and traditions, its most common usage is in the context of Buddhism. The term "enlightenment" was popularised in the Western world through the 19th century translations of Max Müller. It has the western connotation of general insight into transcendental truth or reality. The term is also being used to translate several other Buddhist terms and concepts, which are used to denote (initial) insight (prajna (Sanskrit), wu (Chinese), kensho and satori(Japanese)); knowledge (vidhya); the "blowing out" (Nirvana) of disturbing emotions and desires and the subsequent freedom or release (vimukti); and the attainment of supreme Buddhahood (samyak sam bodhi), as exemplified by Gautama Buddha. What exactly constituted the Buddha's awakening is unknown. It may probably have involved the knowledge that liberation was attained by the combination of mindfulness and dhyāna, applied to the understanding of the arising and ceasing of craving. The relation between dhyana and insight is a core problem in the study of Buddhism, and is one of the fundamentals of Buddhist practice. In the western world the concept of (spiritual) enlightenment has taken on a romantic meaning. It has become synonymous with self-realization and the true self and false self, being regarded as a substantial essence being covered over by social conditioning.
  • 3.1K
  • 22 Nov 2022
Topic Review
Reclaimed Water
Reclaimed or recycled water (also called wastewater reuse or water reclamation) is the process of converting wastewater into water that can be reused for other purposes. Reuse may include irrigation of gardens and agricultural fields or replenishing surface water and groundwater (i.e., groundwater recharge). Reused water may also be directed toward fulfilling certain needs in residences (e.g. toilet flushing), businesses, and industry, and could even be treated to reach drinking water standards. This last option is called either "direct potable reuse" or "indirect potable" reuse, depending on the approach used. Reclaiming water for reuse applications instead of using freshwater supplies can be a water-saving measure. When used water is eventually discharged back into natural water sources, it can still have benefits to ecosystems, improving streamflow, nourishing plant life and recharging aquifers, as part of the natural water cycle. Wastewater reuse is a long-established practice used for irrigation, especially in arid countries. Reusing wastewater as part of sustainable water management allows water to remain as an alternative water source for human activities. This can reduce scarcity and alleviate pressures on groundwater and other natural water bodies.
  • 3.1K
  • 24 Oct 2022
Topic Review
Lignocellulosic biomass (LC biomass)
      Bioenergy represents energy from biomass and plays an important role in promoting renewable alternatives. LC biomass is one of the most generous renewable bioresources in nature containing lignin, cellulose, and hemicelluloses. Lignocellulosic materials are the best sources used for biofuel production, such as biogas, and include residues from agriculture and forests, energy crops, and municipal and food waste. According to the latest statistical report for biogas, in Europe, almost 72% of the feedstocks used in the anaerobic digestion (AD) process for biogas production come from the agricultural sector, such as energy crops, manure, and other agricultural residues. The main issue of using lignocellulosic (LC) biomass for the biogas production is biomass recalcitrance, which represents biomass resistance to chemical and biological breakdown.
  • 3.1K
  • 17 Aug 2021
Topic Review
Kya (Unit)
A year is the orbital period of a planetary body, for example, the Earth, moving in its orbit around the Sun. Due to the Earth's axial tilt, the course of a year sees the passing of the seasons, marked by change in weather, the hours of daylight, and, consequently, vegetation and soil fertility. In temperate and subpolar regions around the planet, four seasons are generally recognized: spring, summer, autumn and winter. In tropical and subtropical regions, several geographical sectors do not present defined seasons; but in the seasonal tropics, the annual wet and dry seasons are recognized and tracked. A calendar year is an approximation of the number of days of the Earth's orbital period, as counted in a given calendar. The Gregorian calendar, or modern calendar, presents its calendar year to be either a common year of 365 days or a leap year of 366 days, as do the Julian calendars; see below. For the Gregorian calendar, the average length of the calendar year (the mean year) across the complete leap cycle of 400 years is 365.2425 days. The ISO standard ISO 80000-3, Annex C, supports the symbol a (for Latin annus) to represent a year of either 365 or 366 days. In English, the abbreviations y and yr are commonly used. In astronomy, the Julian year is a unit of time; it is defined as 365.25 days of exactly 86,400 seconds (SI base unit), totalling exactly 31,557,600 seconds in the Julian astronomical year. The word year is also used for periods loosely associated with, but not identical to, the calendar or astronomical year, such as the seasonal year, the fiscal year, the academic year, etc. Similarly, year can mean the orbital period of any planet; for example, a Martian year and a Venusian year are examples of the time a planet takes to transit one complete orbit. The term can also be used in reference to any long period or cycle, such as the Great Year.
  • 3.1K
  • 14 Nov 2022
  • Page
  • of
  • 5358
ScholarVision Creations