Topic Review
Valproic Acid in Pregnancy Revisited
Valproic acid (VPA) is a very effective anticonvulsant and mood stabilizer with relatively few side effects. Being an epigenetic modulator, it undergoes clinical trials for the treatment of advanced prostatic and breast cancer. However, in pregnancy, it seems to be the most teratogenic antiepileptic drug. Among the proven effects are congenital malformations in about 10%. The more common congenital malformations are neural tube defects, cardiac anomalies, urogenital malformations including hypospadias, skeletal malformations and orofacial clefts. These effects are dose related; daily doses below 600 mg have a limited teratogenic potential. VPA, when added to other anti-seizure medications, increases the malformations rate. It induces malformations even when taken for indications other than epilepsy, adding to the data that epilepsy is not responsible for the teratogenic effects.
  • 334
  • 15 Apr 2024
Topic Review
Thermodynamic Insights into Symmetry Breaking
Symmetry breaking is a phenomenon that is observed in various contexts, from the early universe to complex organisms, and it is considered a key puzzle in understanding the emergence of life. The importance of this phenomenon is underscored by the prevalence of enantiomeric amino acids and proteins. The presence of enantiomeric amino acids and proteins highlights its critical role. However, the origin of symmetry breaking has yet to be comprehensively explained, particularly from an energetic standpoint.  Therefore, a novel approach is explored by considering energy dissipation, specifically the lost free energy, as a crucial factor in elucidating symmetry breaking. A comprehensive thermodynamic analysis applicable to all scales from elementary particles to aggregate structures such as crystals is performed, we present experimental evidence establishing a direct link between nonequilibrium free energy and energy dissipation during the formation of the structures. Results emphasize the pivotal role of energy dissipation, not only as an outcome but as the trigger for symmetry breaking. This insight suggests that understanding the origins of complex systems, from cells to living beings and the universe itself, requires a lens focused on nonequilibrium processes  
  • 317
  • 15 Apr 2024
Topic Review
Antibiotic Resistance (ABR) in Aquatic Environments
Antibiotic resistance (ABR) in aquatic environments can cause detrimental effects on ecosystems and public health. 
  • 220
  • 15 Apr 2024
Topic Review
Basics of High-Entropy Materials
High-entropy materials (HEMs) constitute a revolutionary class of materials that have garnered significant attention in the field of materials science, exhibiting extraordinary properties in the realm of energy storage. These equimolar multielemental compounds have demonstrated increased charge capacities, enhanced ionic conductivities, and a prolonged cycle life, attributed to their structural stability. In the anode, transitioning from the traditional graphite (372 mAh g−1) to an HEM anode can increase capacity and enhance cycling stability. For cathodes, lithium iron phosphate (LFP) and nickel manganese cobalt (NMC) can be replaced with new cathodes made from HEMs, leading to greater energy storage. HEMs play a significant role in electrolytes, where they can be utilized as solid electrolytes, such as in ceramics and polymers, or as new high-entropy liquid electrolytes, resulting in longer cycling life, higher ionic conductivities, and stability over wide temperature ranges. The incorporation of HEMs in metal–air batteries offers methods to mitigate the formation of unwanted byproducts, such as Zn(OH)4 and Li2CO3, when used with atmospheric air, resulting in improved cycling life and electrochemical stability.
  • 180
  • 15 Apr 2024
Topic Review
Chemical Coagulation–Flocculation Technologies and Their Performance
The permanent demand of modern society for water consumption across different industrial and domestic activities involves an increasing requirement for effective facilities that can ensure the treatment of the produced WW (Wastewater) for onsite reuse, recycling, and safe/non-polluting discharge of the final effluents to natural aquatic environments. A few fundamental aspects of WW treatment using different physical, chemical, and biological processes were discussed, with the central goal being focused on the coagulation–flocculation step. Therefore, the role of the coagulation–flocculation step when applied to the treatment of colored textile WW and the advantages and disadvantages of using different chemicals as coagulation–flocculation agents in some industrial WW treatment systems as well as hybrid materials were presented in association with their increased efficiency in comparison to conventional ones.
  • 260
  • 15 Apr 2024
Topic Review
Deep Eutectic Solvents and Rare Earth Elements
The boosted interest in the use of rare earth elements (REEs) in modern technologies had also increase the necessity of their recovery from various sources, including raw materials and wastes. Though Hydrometallurgy plays a key role in these recovery processes, some drawbacks (apparent or not) of these processes (including the use of aggressive mineral acids, harmful extractants and diluents, etc.), had led to the development of a more environmental friendship subclass named Solvometallurgy, in which non-aqueous solvents substituted to the aqueous media of the hydrometallurgical processing. Together to ionic liquids (ILs), the non-aqueous solvents chosen for these usages are the chemicals known as Deep Eutectic Solvents (DEEs). The utilization of DEEs included the leaching of REEs from the different sources containing them, and also in the separation-purification steps necessary for the yielding of these elements, normally as oxides or salts, in the most purified form. 
  • 263
  • 15 Apr 2024
Topic Review
Modularisation in Construction and Precast Building Systems
Modular precast construction is a methodological approach to reduce environmental impacts and increase productivity when building with concrete. Constructions are segmented into similar precast concrete elements, prefabricated with integrated quality control, and assembled just-in-sequence on site. Due to the automatised prefabrication, inaccuracies are minimised and the use of high-performance materials is enabled. 
  • 161
  • 15 Apr 2024
Topic Review
The Principles of Atom Transfer Radical Polymerization
Atom transfer radical polymerization (ATRP) is a robust polymerization method that was developed by Dr. Jin-Shan Wang in Professor Matyjaszewski’s laboratory in 1995. It was inspired by atom transfer radical addition, which was successfully used in the synthesis of low-molecular-weight compounds.
  • 836
  • 14 Apr 2024
Topic Review
Synthesis of Metal Complexes of 2-Thiouracil and Derivatives
The thionamide antithyroid agents were discovered largely through observations carried out by various researchers in the 1940s that found that sulfhydryl-containing substances were goitrogenic in animals. Prof. Edwin B. Astwood started using these drugs to treat hyperthyroidism. The development background of these agents, the coordination possibility of 2-thiouracil and its derivatives are presented herein.
  • 292
  • 12 Apr 2024
Topic Review
Citric Acid Production by Yarrowia lipolytica Yeast
Citric acid (CA) and its derivatives, including salts and esters, are in high demand across various manufacturing sectors. The fungus Aspergillus niger is mainly used for the commercial production of CA, using sucrose and molasses as the primary carbon sources. Since the 1960s, researchers have been working intensively to introduce Yarrowia lipolytica yeast as an alternative to traditional fungal technology.
  • 232
  • 11 Apr 2024
  • Page
  • of
  • 5350
Video Production Service