Biography
Berry L. Cannon
Berry Louis Cannon (March 22, 1935 – February 17, 1969)[1][2][3] was an United States of America aquanaut who served on the SEALAB II and III projects of the U.S. Navy. Cannon died of carbon dioxide poisoning while attempting to repair SEALAB III. It was later found that his diving rig's baralyme canister, which should have absorbed the carbon dioxide Cannon exhaled, was empty.[4] Born Marc
  • 593
  • 28 Nov 2022
Topic Review
BESS Performance in Providing Various Electricity Market Services
The Battery Energy Storage System (BESS) is one of the possible solutions to overcoming the non-programmability associated with these energy sources. The capabilities of BESSs to store a consistent amount of energy and to behave as a load by releasing it ensures an essential source of flexibility to the power system.
  • 154
  • 28 Feb 2024
Topic Review
Best Estimate Plus Uncertainty Analysis in LBLOCA
As one of the Deterministic safety analysis (DSA) methodologies, best estimate plus uncertainty (BEPU) generates more realistic results that can be used in the license application of nuclear power plants (NPPs). However, uncertainty evaluation of parameters is needed in BEPU. The safety regulatory focuses on the large break loss of coolant accident (LBLOCA) of an advanced PWR. The BEPU analysis is mainly performed by TRACE V5.0 patch 4 code, and the uncertainty analysis is conducted based on DAKOTA code. 
  • 1.3K
  • 18 Feb 2022
Topic Review
Beta-Ti Alloys
β-Ti alloys are known for their excellent corrosion resistance, biocompatibility (in Ti-Nb alloys), and high strength-to-weight ratios, and some grades have a relatively low Young’s modulus (E). These favorable properties have led to the use of these alloys in the automotive, aerospace, biomedical, and industrial sectors.
  • 181
  • 01 Feb 2024
Topic Review
BFR (Rocket)
The Big Falcon Rocket (officially shortened to BFR) is a privately funded fully reusable launch vehicle and spacecraft system in development by SpaceX. The overall space vehicle architecture includes both launch vehicles and spacecraft, as well as ground infrastructure for rapid launch and relaunch, and zero-gravity propellant transfer technology to be deployed in low Earth orbit (LEO). The payload capacity to Earth orbit of at least 100,000 kg (220,000 lb) makes BFR a super heavy-lift launch vehicle. The first orbital flight is tentatively planned for 2020. SpaceX has been developing a super heavy-lift launch vehicle for many years, with the exact design and nomenclature of the vehicle undergoing multiple revisions over time. Before 2016, the vehicle was referred to as the Mars Colonial Transporter (MCT), though very few details about the design of the MCT were ever made public. Starting from 2016, SpaceX began sharing annual updates with the public, detailing the designs and uses of their upcoming new launch vehicle. In 2016, SpaceX CEO Elon Musk presented the vehicle at the International Astronautical Congress as the ITS launch vehicle, forming a core part of Musk's comprehensive vision for an Interplanetary Transport System (ITS). The ITS vehicle had a 12-meter (39 ft) core diameter, but was only intended for interplanetary travel. In September 2017, the design (now known as the BFR) was scaled down to 9 meters (30 ft) While the ITS had been solely aimed at Mars transit and other interplanetary uses, SpaceX pivoted to a plan that would support all SpaceX launch service provider capabilities with a single set of 9-meter vehicles: Earth orbit, lunar orbit, Interplanetary spaceflight, and potentially, even intercontinental passenger transport on Earth. In September 2018, a redesign of the second stage was announced, adding steerable canards, two radially adjustable fins also acting as landing legs, and a third leg that looks like a vertical stabilizer but has no aerodynamic function due to the special re-entry profile of the spacecraft. The launch vehicle design is dependent on the concurrent development work on the Raptor rocket engines, which are cryogenic methalox-fueled engines to be used for both stages of the BFR launch vehicle. Development on the Raptor began in 2012, leading to engine testing which began in 2016. The BFR system is intended to completely replace all of SpaceX's existing space hardware (the Falcon 9 and Falcon Heavy launch vehicles, and the Dragon spacecraft), initially aiming at the Earth-orbit launch market, but explicitly adding substantial capability to support long-duration spaceflight in the cislunar and Mars transport flight environments.
  • 722
  • 14 Nov 2022
Topic Review
BFR Satellite Delivery Spacecraft
The Big Falcon Rocket (officially shortened to BFR) is a privately funded fully reusable launch vehicle and spacecraft system in development by SpaceX. The overall space vehicle architecture includes both launch vehicles and spacecraft, as well as ground infrastructure for rapid launch and relaunch, and zero-gravity propellant transfer technology to be deployed in low Earth orbit (LEO). The payload capacity to Earth orbit of at least 100,000 kg (220,000 lb) makes BFR a super heavy-lift launch vehicle. The first orbital flight is tentatively planned for 2020. SpaceX has been developing a super heavy-lift launch vehicle for many years, with the exact design and nomenclature of the vehicle undergoing multiple revisions over time. Before 2016, the vehicle was referred to as the Mars Colonial Transporter (MCT), though very few details about the design of the MCT were ever made public. Starting from 2016, SpaceX began sharing annual updates with the public, detailing the designs and uses of their upcoming new launch vehicle. In 2016, SpaceX CEO Elon Musk presented the vehicle at the International Astronautical Congress as the ITS launch vehicle, forming a core part of Musk's comprehensive vision for an Interplanetary Transport System (ITS). The ITS vehicle had a 12-meter (39 ft) core diameter, but was only intended for interplanetary travel. In September 2017, the design (now known as the BFR) was scaled down to 9 meters (30 ft) While the ITS had been solely aimed at Mars transit and other interplanetary uses, SpaceX pivoted to a plan that would support all SpaceX launch service provider capabilities with a single set of 9-meter vehicles: Earth orbit, lunar orbit, Interplanetary spaceflight, and potentially, even intercontinental passenger transport on Earth. In September 2018, a redesign of the second stage was announced, adding steerable canards, two radially adjustable fins also acting as landing legs, and a third leg that looks like a vertical stabilizer but has no aerodynamic function due to the special re-entry profile of the spacecraft. The launch vehicle design is dependent on the concurrent development work on the Raptor rocket engines, which are cryogenic methalox-fueled engines to be used for both stages of the BFR launch vehicle. Development on the Raptor began in 2012, leading to engine testing which began in 2016. The BFR system is intended to completely replace all of SpaceX's existing space hardware (the Falcon 9 and Falcon Heavy launch vehicles, and the Dragon spacecraft), initially aiming at the Earth-orbit launch market, but explicitly adding substantial capability to support long-duration spaceflight in the cislunar and Mars transport flight environments.
  • 317
  • 20 Oct 2022
Topic Review
BFR Spaceship
The Big Falcon Rocket (officially shortened to BFR) is a privately funded fully reusable launch vehicle and spacecraft system in development by SpaceX. The overall space vehicle architecture includes both launch vehicles and spacecraft, as well as ground infrastructure for rapid launch and relaunch, and zero-gravity propellant transfer technology to be deployed in low Earth orbit (LEO). The payload capacity to Earth orbit of at least 100,000 kg (220,000 lb) makes BFR a super heavy-lift launch vehicle. The first orbital flight is tentatively planned for 2020. SpaceX has been developing a super heavy-lift launch vehicle for many years, with the exact design and nomenclature of the vehicle undergoing multiple revisions over time. Before 2016, the vehicle was referred to as the Mars Colonial Transporter (MCT), though very few details about the design of the MCT were ever made public. Starting from 2016, SpaceX began sharing annual updates with the public, detailing the designs and uses of their upcoming new launch vehicle. In 2016, SpaceX CEO Elon Musk presented the vehicle at the International Astronautical Congress as the ITS launch vehicle, forming a core part of Musk's comprehensive vision for an Interplanetary Transport System (ITS). The ITS vehicle had a 12-meter (39 ft) core diameter, but was only intended for interplanetary travel. In September 2017, the design (now known as the BFR) was scaled down to 9 meters (30 ft) While the ITS had been solely aimed at Mars transit and other interplanetary uses, SpaceX pivoted to a plan that would support all SpaceX launch service provider capabilities with a single set of 9-meter vehicles: Earth orbit, lunar orbit, Interplanetary spaceflight, and potentially, even intercontinental passenger transport on Earth. In September 2018, a redesign of the second stage was announced, adding steerable canards, two radially adjustable fins also acting as landing legs, and a third leg that looks like a vertical stabilizer but has no aerodynamic function due to the special re-entry profile of the spacecraft. The launch vehicle design is dependent on the concurrent development work on the Raptor rocket engines, which are cryogenic methalox-fueled engines to be used for both stages of the BFR launch vehicle. Development on the Raptor began in 2012, leading to engine testing which began in 2016. The BFR system is intended to completely replace all of SpaceX's existing space hardware (the Falcon 9 and Falcon Heavy launch vehicles, and the Dragon spacecraft), initially aiming at the Earth-orbit launch market, but explicitly adding substantial capability to support long-duration spaceflight in the cislunar and Mars transport flight environments.
  • 633
  • 14 Oct 2022
Topic Review
BFR Tanker
The Big Falcon Rocket (officially shortened to BFR) is a privately funded fully reusable launch vehicle and spacecraft system in development by SpaceX. The overall space vehicle architecture includes both launch vehicles and spacecraft, as well as ground infrastructure for rapid launch and relaunch, and zero-gravity propellant transfer technology to be deployed in low Earth orbit (LEO). The payload capacity to Earth orbit of at least 100,000 kg (220,000 lb) makes BFR a super heavy-lift launch vehicle. The first orbital flight is tentatively planned for 2020. SpaceX has been developing a super heavy-lift launch vehicle for many years, with the exact design and nomenclature of the vehicle undergoing multiple revisions over time. Before 2016, the vehicle was referred to as the Mars Colonial Transporter (MCT), though very few details about the design of the MCT were ever made public. Starting from 2016, SpaceX began sharing annual updates with the public, detailing the designs and uses of their upcoming new launch vehicle. In 2016, SpaceX CEO Elon Musk presented the vehicle at the International Astronautical Congress as the ITS launch vehicle, forming a core part of Musk's comprehensive vision for an Interplanetary Transport System (ITS). The ITS vehicle had a 12-meter (39 ft) core diameter, but was only intended for interplanetary travel. In September 2017, the design (now known as the BFR) was scaled down to 9 meters (30 ft) While the ITS had been solely aimed at Mars transit and other interplanetary uses, SpaceX pivoted to a plan that would support all SpaceX launch service provider capabilities with a single set of 9-meter vehicles: Earth orbit, lunar orbit, Interplanetary spaceflight, and potentially, even intercontinental passenger transport on Earth. In September 2018, a redesign of the second stage was announced, adding steerable canards, two radially adjustable fins also acting as landing legs, and a third leg that looks like a vertical stabilizer but has no aerodynamic function due to the special re-entry profile of the spacecraft. The launch vehicle design is dependent on the concurrent development work on the Raptor rocket engines, which are cryogenic methalox-fueled engines to be used for both stages of the BFR launch vehicle. Development on the Raptor began in 2012, leading to engine testing which began in 2016. The BFR system is intended to completely replace all of SpaceX's existing space hardware (the Falcon 9 and Falcon Heavy launch vehicles, and the Dragon spacecraft), initially aiming at the Earth-orbit launch market, but explicitly adding substantial capability to support long-duration spaceflight in the cislunar and Mars transport flight environments.
  • 830
  • 23 Nov 2022
Topic Review
Bharat Stage Emission Standards
Bharat stage emission standards (BSES) are emission standards instituted by the Government of India to regulate the output of air pollutants from internal combustion engines and Spark-ignition engines equipment, including motor vehicles. The standards and the timeline for implementation are set by the Central Pollution Control Board under the Ministry of Environment & Forests and climate change. The standards, based on European regulations were first introduced in 2000. Progressively stringent norms have been rolled out since then. All new vehicles manufactured after the implementation of the norms have to be compliant with the regulations. Since October 2010, Bharat Stage (BS) III norms have been enforced across the country. In 13 major cities, Bharat Stage IV emission norms have been in place since April 2010 and it has been enforced for entire country since April 2017. In 2016, the Indian government announced that the country would skip the BS-V norms altogether and adopt BS-VI norms by 2020. On November 15, 2017 The Petroleum Ministry of India in consultation with Public Oil Marketing Companies decided to bring forward the date of BS-VI grade auto fuels in NCT of Delhi with effect from April 1, 2018 instead of April 1, 2020. In fact, Petroleum Ministry OMCs were asked to examine the possibility of introduction of BS-VI auto fuels in the whole of NCR area from April 1, 2019. This huge step was taken due the heavy problem of air pollution faced by Delhi which became worse around this year. The decision was met with disarray by the automobile companies as they had planned the development according to roadmap for 2020. The phasing out of 2-stroke engine for two wheelers, the cessation of production of Maruti 800 & introduction of electronic controls have been due to the regulations related to vehicular emissions. While the norms help in bringing down pollution levels, it invariably results in increased vehicle cost due to the improved technology & higher fuel prices. However, this increase in private cost is offset by savings in health costs for the public, as there is lesser amount of disease causing particulate matter and pollution in the air. Exposure to air pollution can lead to respiratory and cardiovascular diseases, which is estimated to be the cause for 6.2 lakh early deaths in 2010, and the health cost of air pollution in India has been assessed at 3% of its GDP.
  • 1.5K
  • 09 Nov 2022
Topic Review
Bias Temperature Instability of MOSFETs
CMOS technology dominates the semiconductor industry, and the reliability of MOSFETs is a key issue. Negative bias temperature instability (NBTI) and positive bias temperature instability (PBTI) mainly degrade the performance of pMOSFETs and nMOSFETs, respectively. 
  • 4.9K
  • 13 May 2022
  • Page
  • of
  • 678
Video Production Service