Topic Review
Adhesion in Bitumen/Aggregate System
The five main theories describing the interaction mechanisms in the bitumen/aggregate system was conducted: theory of weak boundary layers, mechanical theory, electrostatic theory, chemical bonding theory, and thermodynamic theory (adsorption theory). The adhesion assessment methods in the bitumen/aggregate system are described, which can be divided into three main groups: determination of adhesion forces for bitumen with different materials, determination of bitumen resistance to the exfoliating action of water with different materials, and determination of adhesion as a fundamental value (contact angle measurements, interfacial fracture energy, adsorption capacity and others).
  • 1.7K
  • 04 Jan 2023
Topic Review
Adhesive Joint Design for Hybrid Automotive Wheel
When it comes to lightweight design of automotive wheels, hybrid designs consisting of a carbon composite wheel rim and a metallic, e.g., aluminum alloy, wheel disc offer significant potential. However, the conventionally used bolted joint between the two parts is complex and requires compromises in lightweight design due to the additional mechanical elements. An adhesive joint for a hybrid wheel is developed in order to demonstrate its performance and lightweight potential. 
  • 494
  • 23 Mar 2023
Topic Review
Adjustable-Speed Drive
Adjustable speed drive (ASD), also known as variable-speed drive (VSD), describes equipment used to control the speed of machinery. Many industrial processes such as assembly lines must operate at different speeds for different products. Where process conditions demand adjustment of flow from a pump or fan, varying the speed of the drive may save energy compared with other techniques for flow control. Where speeds may be selected from several different pre-set ranges, usually the drive is said to be adjustable speed. If the output speed can be changed without steps over a range, the drive is usually referred to as variable speed. Adjustable and variable speed drives may be purely mechanical (termed variators), electromechanical, hydraulic, or electronic.
  • 2.9K
  • 10 Nov 2022
Topic Review
Adopting Modular Integrated Construction for Affordable Sustainable Housing
The rise of offsite construction (OSC) techniques, especially modular integrated construction (MiC), has been evident. MiC’s adoption in affordable sustainable housing (ASH) is still underdeveloped; however, due to various benefits of MiC over conventional construction methods, it is envisioned to be a significant emerging approach for tackling growing housing demand, and ASH in particular.
  • 762
  • 15 Jun 2022
Topic Review
Adsorption Factors in Enhanced Coal Bed Methane Recovery
Enhanced coal bed methane recovery using gas injection can provide increased methane extraction depending on the characteristics of the coal and the gas that is used. Accurate prediction of the extent of gas adsorption by coal are therefore important. Both experimental methods and modeling have been used to assess gas adsorption and its effects, including volumetric and gravimetric techniques, as well as the Ono–Kondo model and other numerical simulations. Thermodynamic parameters may be used to model adsorption on coal surfaces while adsorption isotherms can be used to predict adsorption on coal pores. In addition, density functional theory and grand canonical Monte Carlo methods may be employed. 
  • 438
  • 26 Jan 2022
Topic Review
Adsorptive Biogas Purification
Siloxanes are among the most technologically troublesome trace compounds present in biogas. As a result of their combustion, hard‐to‐remove sediments are formed, blocking biogas energy processing devices and reducing the efficiency of biogas plants. This entry can help to choose the optimal technology for the adsorptive removal of volatile methylsiloxanes (VMSs) from biogas and to identify adsorbents worth further development. Both the already implemented methods of adsorptive VMSs removal from landfill and sewage gases—e.g. using activated carbon and silica gel—and the ones being under development—e.g. using polymer resins—are presented, and their advantages and drawbacks are analyzed. The methods of obtaining adsorbents and the parameters of adsorption processes are discussed, and possible ways of regenerating spent adsorbents are evaluated. Especially promising adsorbents seem to be some zeolites—which can also be used for biogas desulfurization—and adsorbents based on polymer resins, as being particularly active towards VMSs and most amenable to multiple regeneration.
  • 901
  • 27 Oct 2020
Topic Review
Advanced Bioengineered Skin Equivalents
The formation of severe scars still represents the result of the closure process of extended and deep skin wounds. To address this issue, different bioengineered skin substitutes have been developed but a general consensus regarding their effectiveness has not been achieved yet. It will be shown that bioengineered skin substitutes, although representing a valid alternative to autografting, induce skin cells in repairing the wound rather than guiding a regeneration process. Repaired skin differs from regenerated skin, showing high contracture, loss of sensitivity, impaired pigmentation and absence of cutaneous adnexa (i.e., hair follicles and sweat glands). This leads to significant mobility and aesthetic concerns, making the development of more effective bioengineered skin models a current need. The objective of this review is to determine the limitations of either commercially available or investigational bioengineered skin substitutes and how advanced skin tissue engineering strategies can be improved in order to completely restore skin functions after severe wounds.
  • 1.8K
  • 30 Jul 2020
Topic Review
Advanced Combustion for Improving Thermal Efficiency
Improving thermal efficiency and reducing carbon emissions are the permanent themes for internal combustion (IC) engines. Improving thermal efficiency and reducing fuel consumption and greenhouse gas (GHG) emissions motivate the technological progress of the automobile and engine industry.
  • 1.1K
  • 14 Sep 2022
Topic Review
Advanced Driver-Assistance Systems
Advanced Driver-Assistance Systems (ADASs) are used for increasing safety in the automotive domain, yet current ADASs notably operate without taking into account drivers’ states, e.g., whether she/he is emotionally apt to drive.
  • 843
  • 23 Dec 2020
Topic Review
Advanced Gemini
Advanced Gemini is a number of proposals that would have extended the Gemini program by the addition of various missions, including manned low Earth orbit, circumlunar and lunar landing missions. Gemini was the second manned spaceflight program operated by NASA, and consisted of a two-seat spacecraft capable of maneuvering in orbit, docking with unmanned spacecraft such as Agena Target Vehicles, and allowing the crew to perform tethered extra-vehicular activities. A range of applications were considered for Advanced Gemini missions, including military flights, space station crew and logistics delivery, and lunar flights. The Lunar proposals ranged from reusing the docking systems developed for the Agena target vehicle on more powerful upper stages such as the Centaur, which could propel the spacecraft to the Moon, to complete modifications of the Gemini to enable it to land on the Lunar surface. Its applications would have ranged from manned lunar flybys before Apollo was ready, to providing emergency shelters or rescue for stranded Apollo crews, or even replacing the Apollo program. Some of the Advanced Gemini proposals used "off-the-shelf" Gemini spacecraft, unmodified from the original program, while others featured modifications to allow the spacecraft to carry more crew, dock with space stations, visit the Moon, and perform other mission objectives. Other modifications considered included the addition of wings or a parasail to the spacecraft, in order to enable it to make a horizontal landing.
  • 454
  • 03 Nov 2022
  • Page
  • of
  • 677
Video Production Service