Topic Review
Solar Thermal Technology in Buildings
Buildings account for a significant proportion of total energy consumption. The integration of renewable energy sources is essential to reducing energy demand and achieve sustainable building design. The use of solar energy has great potential for promoting energy efficiency and reducing the environmental impact of energy consumption in buildings.
  • 227
  • 07 Mar 2024
Topic Review
Intermediate-Temperature Embrittlement of Metals and Alloys
The intermediate-temperature embrittlement range was examined for Fe, Al, Cu, and Ni alloys. It was found that this embrittlement occurs in many alloys, although the causes are very diverse. Embrittlement can be due to fine matrix precipitation, precipitate free zones, melting of compounds at the grain boundaries, segregation of elements to the boundaries, and, additionally for steel, the presence of the soft ferrite film surrounding the harder austenite matrix. Grain boundary sliding and segregation to the boundaries seem to dominate the failure mode at the base of the trough when intergranular failure takes place. When cracking is due to the presence of hydrogen or liquid films at the boundary, then the dissociation along the boundaries is so easy, it is often independent of the strain rate and is always intergranular. 
  • 239
  • 06 Mar 2024
Topic Review
Microorganisms in Structural Materials Biodegradation and Microbiological Corrosion
Microbiologically influenced corrosion (MIC) is the process of material degradation in the presence of microorganisms and their biofilms. This is an environmentally assisted type of corrosion, which is highly complex and challenging to fully understand. Different metallic materials, such as steel alloys, magnesium alloys, aluminium alloys, and titanium alloys, have been reported to have adverse effects of MIC on their applications. Though many researchers have reported bacteria as the primary culprit of microbial corrosion, several other microorganisms, including fungi, algae, archaea, and lichen, have been found to cause MIC on metal and non-metal surfaces. However, less attention is given to the MIC caused by fungi, algae, archaea, and lichens.
  • 255
  • 06 Mar 2024
Topic Review
Contacts at the Nanoscale
Contact scaling is a major challenge in nano complementary metal–oxide–semiconductor (CMOS) technology, as the surface roughness, contact size, film thicknesses, and undoped substrate become more problematic as the technology shrinks to the nanometer range. These factors increase the contact resistance and the nonlinearity of the current–voltage characteristics, which could limit the benefits of the further downsizing of CMOS devices. 
  • 168
  • 06 Mar 2024
Topic Review
Dexterity of Anthropomorphic Soft Hand
Humans possess dexterous hands that surpass those of other animals, enabling them to perform intricate, complex movements. Soft hands, known for their inherent flexibility, aim to replicate the functionality of human hands. By mimicking the shape, structure, and functionality of human hands, soft hands can partially replicate human-like movements, offering adaptability and operability during grasping tasks. 
  • 120
  • 06 Mar 2024
Topic Review
Control Technology of Offshore Wind Power Systems
As global energy crises and climate change intensify, offshore wind energy, as a renewable energy source, is given more attention globally. The wind power generation system is fundamental in harnessing offshore wind energy, where the control and design significantly influence the power production performance and the production cost.
  • 224
  • 06 Mar 2024
Topic Review
Energy Storage in Urban Areas
Positive Energy Districts can be defined as connected urban areas, or energy-efficient and flexible buildings, which emit zero greenhouse gases and manage surpluses of renewable energy production. Energy storage is crucial for providing flexibility and supporting renewable energy integration into the energy system. It can balance centralized and distributed energy generation, while contributing to energy security. Energy storage can respond to supplement demand, provide flexible generation, and complement grid development. Photovoltaics and wind turbines together with solar thermal systems and biomass are widely used to generate electricity and heating, respectively, coupled with energy system storage facilities for electricity (i.e., batteries) or heat storage using latent or sensible heat. Energy storage technologies are crucial in modern grids and able to avoid peak charges by ensuring the reliability and efficiency of energy supply, while supporting a growing transition to nondepletable power sources.
  • 280
  • 06 Mar 2024
Topic Review
Thermographic Techniques for Skin Cancer Diagnosis
Infrared (IR) thermography is one of the most promising technologies now available for the early detection of malignant diseases (such as skin and breast cancers). Its significant strengths are the absence of contact and dangerous radiation; it is also a non-invasive and cost-effective technique.
  • 170
  • 05 Mar 2024
Topic Review
Lead–Acid Battery Faults
Lead–acid battery technology has been effectively fulfilling a variety of energy needs, ranging from classic car industry requirements to current plug-in hybrid electric vehicle requirements through any stationary system. Depending on the operating conditions, the battery can be affected in many ways. The same deterioration mechanisms affect all types of lead–acid batteries but to varying degrees. Two electrodes with the aqueous H2SO4 electrolyte (sulfuric acid) and the terminals are the main components of a lead–acid battery. A grid and the active material—PbO2 as the positive active material and Pb as the negative active material—make up the electrodes.
  • 330
  • 05 Mar 2024
Topic Review
Mechanisms of Hydrogen Embrittlement
Hydrogen embrittlement (HE) is a broadly recognized phenomenon in metallic materials. If not well understood and managed, HE may lead to catastrophic environmental failures in vessels containing hydrogen, such as pipelines and storage tanks. HE can affect the mechanical properties of materials such as ductility, toughness, and strength, mainly through the interaction between metal defects and hydrogen. Various phenomena such as hydrogen adsorption, hydrogen diffusion, and hydrogen interactions with intrinsic trapping sites like dislocations, voids, grain boundaries, and oxide/matrix interfaces are involved in this process.
  • 355
  • 05 Mar 2024
  • Page
  • of
  • 678
Video Production Service