Topic Review
Modeling Hydraulically Powered Flight Control Actuation System
Many different types of aircraft designs have flight control systems (FCS) powered by hydraulic systems. With respect to the torques, moments, surface areas, and opposing forces to be acted upon, components introduce faults into the hydraulic system when these components are aging or degrading. The diagnostics of a hydraulically powered flight control actuation system (HPFCAS) rely on the faults produced within the subsystem components as well as the entire system’s mechanism itself.
  • 167
  • 09 Feb 2024
Topic Review
Domain Adaptive Semantic Segmentation of Remote Sensing Images
Semantic segmentation techniques for remote sensing images (RSIs) have been widely developed and applied. When a large change occurs in the target scenes, model performance drops significantly. Therefore, unsupervised domain adaptation (UDA) for semantic segmentation is proposed to alleviate the reliance on expensive per-pixel densely labeled data.
  • 116
  • 09 Feb 2024
Topic Review
Fuel Cells Technologies
The complexity of Fuel Cell (FC) systems demands a profound and sustained understanding of the various phenomena occurring inside of it. Thus far, FCs, especially Proton Exchange Membrane Fuel Cells (PEMFCs), have been recognized as being among the most promising technologies for reducing Green House Gas (GHG) emissions because they can convert the chemical energy bonded to hydrogen and oxygen into electricity and heat.
  • 109
  • 09 Feb 2024
Topic Review
Production of Ultra-High-Performance Concrete
Ultra-high-performance concrete (UHPC) is defined as a type of concrete that exhibits compressive strength greater than 120 MPa, a nominal maximum aggregate size of less than 5 mm, and flowability between 200 mm and 250 mm. UHPC exhibits a tensile strength greater than 5 MPa. According to the Federal Highway Administration (FHWA), USA, UHPC is characterized by the use of a combination of Portland cement and supplementary cementitious materials, an optimised gradation of granular materials, a high volume of discontinuous internal fibres, and a low water-to-cementitious materials ratio of less than 0.25. The microstructure of UHPC is characterized irregular pores, which control liquid evaporation and enhance durability in comparison to conventional and high-performance concretes.
  • 144
  • 08 Feb 2024
Topic Review Peer Reviewed
Optimization Examples for Water Allocation, Energy, Carbon Emissions, and Costs
The field of Water Resources Management (WRM) is becoming increasingly interdisciplinary, realizing its direct connections with energy, food, and social and economic sciences, among others. Computationally, this leads to more complex models, wherein the achievement of multiple goals is sought. Optimization processes have found various applications in such complex WRM problems. This entry considers the main factors involved in modern WRM, and puts them in a single optimization problem, including water allocation from different sources to different uses and non-renewable and renewable energy supplies, with their associated carbon emissions and costs. The entry explores the problem mathematically by presenting different optimization approaches, such as linear, fuzzy, dynamic, goal, and non-linear programming models. Furthermore, codes for each model are provided in Python, an open-source language. This entry has an educational character, and the examples presented are easily reproducible, so this is expected to be a useful resource for students, modelers, researchers, and water managers.
  • 122
  • 08 Feb 2024
Topic Review
Sustainability in Natural-Fiber-Reinforced Polymers
Fiber-reinforced polymer composites (FRCs) from renewable and biodegradable fiber and sustainable polymer resins have gained substantial attention for their potential to mitigate environmental impacts. The limitations of these composites become evident when considered in the context of high-performance engineering applications, where synthetic fiber composites like glass or carbon FRCs typically dominate. A balance between the performance of the composite and biodegradability is imperative in the pursuit of what may be termed an environmentally conscious composite. 
  • 162
  • 08 Feb 2024
Topic Review
3D Laser Scanner in a Structural Framework
As interest in smart construction technology increases, various smart construction technologies are being used for sustainable construction management. Among these technologies, 3D laser scanning technology receives data such as the speed, time, direction, and distance of light or laser beams reflected from the target object, allowing the representation of the object’s shape in a 3D-coordinate-based point cloud. Currently, a variety of equipment is used in 3D laser scanning, with the time-of-flight (TOF) method and phase-shift method commonly employed for laser scanning to detect the wavelength. This technology stands out for phenomena analysis and monitoring, with various applications being studied for construction engineering and management in construction industry.
  • 137
  • 08 Feb 2024
Topic Review
Digital Twin Approach in Buildings
In 2011, the term Digital Twin was originally introduced by Michael Grieves to define the synchronization between two realities: physical objects placed in a real space and virtual objects within in virtual space, linked through the mutual exchange of data throughout the entire lifecycle, both in real-time and asynchronously. Digital Twin is among the principal and emerging technological innovations of both Industry 4.0 and the emerging Industry 5.0, enabling an interaction between physical and virtual objects, Big Data, Internet of Things, and Artificial Intelligence. The construction sector, too, is now exploring the potentialities offered by the Digital Twin approach in enhancing innovative, responsible, and sustainable governance of buildings’ lifecycles. 
  • 88
  • 08 Feb 2024
Topic Review
Networked Microgrids
The increasing impact of climate change and rising occurrences of natural disasters pose substantial threats to power systems. Strengthening resilience against these low-probability, high-impact events is crucial. The proposition of reconfiguring traditional power systems into advanced networked microgrids (NMGs) emerges as a promising solution.
  • 152
  • 08 Feb 2024
Topic Review
XFEM for Material Design
The eXtended finite element method (XFEM) is a powerful tool for structural mechanics, assisting engineers and designers in understanding how a material architecture responds to stresses and consequently assisting the creation of mechanically improved structures. The XFEM method has unraveled the extraordinary relationships between material topology and fracture behavior in biological and engineered materials, enhancing peculiar fracture toughening mechanisms, such as crack deflection and arrest.
  • 136
  • 08 Feb 2024
  • Page
  • of
  • 677
Video Production Service