Topic Review
Metal Matrix Composites
Metal matrix composites (MMCs) present extraordinary characteristics, including high wear resistance, excellent operational properties at elevated temperature, and better chemical inertness as compared to traditional alloys. These properties make them prospective candidates in the fields of aerospace, automotive, heavy goods vehicles, electrical, and biomedical industries. MMCs are challenging to process via traditional manufacturing techniques, requiring high cost and energy. The laser-melting deposition (LMD) has recently been used to manufacture MMCs via rapid prototyping, thus, solving these drawbacks. Besides the benefits mentioned above, the issues such as lower ultimate tensile strength, yield strength, weak bonding between matrix and reinforcements, and cracking are still prevalent in parts produced by LMD. In this article, a detailed analysis is made on the MMCs manufactured via LMD. An illustration is presented on the LMD working principle, its classification, and dependent and independent process parameters. Moreover, a brief comparison between the wire and powder-based LMDs has been summarized. Ex- and in-situ MMCs and their preparation techniques are discussed. Besides this, various matrices available for MMCs manufacturing, properties of MMCs after printing, possible complications and future research directions are reviewed and summarized.
  • 2.7K
  • 18 May 2021
Topic Review
LAN Switching
LAN switching is a form of packet switching used in local area networks (LAN). Switching technologies are crucial to network design, as they allow traffic to be sent only where it is needed in most cases, using fast, hardware-based methods. LAN switching uses different kinds of network switches. A standard switch is known as a layer 2 switch and is commonly found in nearly any LAN. Layer 3 or layer 4 switches require advanced technology (see managed switch) and are more expensive, and thus are usually only found in larger LANs or in special network environments.
  • 2.7K
  • 15 Nov 2022
Topic Review
Woodward Effect
The Woodward effect, also referred to as a Mach effect, is part of a hypothesis proposed by James F. Woodward in 1990. The hypothesis states that transient mass fluctuations arise in any object that absorbs internal energy while undergoing a proper acceleration. Harnessing this effect could generate a reactionless thrust, which Woodward and others claim to measure in various experiments. Hypothetically, the Woodward effect would allow for field propulsion spacecraft engines that would not have to expel matter. Such a proposed engine is sometimes called a Mach effect thruster (MET) or a Mach Effect Gravitational Assist (MEGA) drive. So far, experimental results have not strongly supported this hypothesis, but experimental research on this effect, and its potential applications, continues. The Space Studies Institute was selected as part of NASA's Innovative Advanced Concepts program as a Phase I proposal in April 2017 for Mach Effect research. The year after, NASA awarded a NIAC Phase II grant to the SSI to further develop these propellantless thrusters. The effect is controversial within mainstream physics because the underlying model proposed for it appears to be faulty, resulting in violations of energy conservation as well as momentum conservation.
  • 2.7K
  • 16 Nov 2022
Topic Review
Wave Energy Marine Buoys
The power supply is usually the bottleneck for marine distributed systems such as buoys. Wave energy technologies are especially useful in this sense, as they can capture and convert the promising “native” renewable energy in the ocean (i.e., wave energy) into electricity.
  • 2.7K
  • 08 Jul 2022
Topic Review
Single-Zone HVAC Systems
Single-zone HVAC systems are installed in most residential buildings, which implies regulating all the rooms of the house with a single thermostat and with static ventilation registers.
  • 2.7K
  • 27 Oct 2020
Topic Review Video
Direct Carbon Fuel Cells
Most fuel cells invariably use gaseous or liquid fuels. A fuel cell technology that has attracted attention only recently, the direct carbon fuel cell (DCFC) uses solid fuel (carbon) and converts the chemical energy in the carbon to electricity through its direct participation in the fuel cell reactions and electrochemical oxidation. The fuel use can be almost 100% compared with about 85% for most other fuel cells. The electrical efficiency is expected to be above 70% - almost twice those of current generation coal-fired plants leading to 50% reduction in greenhouse gas emissions. The amount of CO2 for storage/sequestration is also halved. Moreover, the exit gas is almost pure carbon dioxide stream, requiring no or minimal gas separation and processing for sequestration. Therefore, the energy and cost penalties to capture the CO2 will be significantly less than for other technologies. However, the technology is at an early stage of development requiring many complex challenges to be overcome, related to materials and corrosion, fuel delivery mechanism, and system development, before it can be commercialized. Section 19.4 of a recent book by the author gives an overview of this technology focusing on its main issues (Sequeira, 2019.). Two of the main DCFCs, the direct carbon molten carbonate fuel cell (DC-MCFC) and the direct carbon solid oxide fuel cell (DC-SOFC) are described in this topic review. 
  • 2.7K
  • 04 Aug 2021
Topic Review
Variable Speed Diesel Generators
Variable Speed Diesel Generators (VSDGs)  is a solution to optimize engine consumption and increase system efficiency during different regimes. It improves system behavior by adapting diesel generators (DGs) speed with demanded mechanical load from the generator. VSDG improves efficiency, increases engine lifetime, reduces fuel consumption, and GHG emissions. Conventional fixed speed DG can rarely operate at less than 50% of the maximal load, while VSDGs can operate for a long period at low rotational speed to support lower loads.
  • 2.7K
  • 19 Jan 2022
Topic Review Peer Reviewed
Low-Pressure Turbine Cooling Systems
Modern low-pressure turbine engines are equipped with casings impingement cooling systems. Those systems (called Active Clearance Control) are composed of an array of air nozzles, which are directed to strike turbine casing to absorb generated heat. As a result, the casing starts to shrink, reducing the radial gap between the sealing and rotating tip of the blade. Cooling air is delivered to the nozzles through distribution channels and collector boxes, which are connected to the main air supply duct. The application of low-pressure turbine cooling systems increases its efficiency and reduces engine fuel consumption.
  • 2.6K
  • 13 Apr 2022
Topic Review
Reverse Water Gas Shift Reaction
The catalytic conversion of CO2 to CO by the reverse water gas shift (RWGS) reaction followed by well-established synthesis gas conversion technologies could be a practical technique to convert CO2 to valuable chemicals and fuels in industrial settings. For catalyst developers, prevention of side reactions like methanation, low-temperature activity, and selectivity enhancements for the RWGS reaction are crucial concerns. Cerium oxide (ceria, CeO2) has received considerable attention due to its exceptional physical and chemical properties. 
  • 2.7K
  • 09 Oct 2022
Topic Review
Apple Fermented Products
Fermentation is a process of transforming one substance into another, carried out by microorganisms, such as bacteria and fungi, under certain circumstances, and which can occur under aerobic and/or anaerobic conditions.
  • 2.7K
  • 18 Mar 2021
  • Page
  • of
  • 649
Video Production Service