Topic Review
Classification of Green Solvents
Green solvents, such as bio-based (derived from renewable sources), water-based (dissolved in water), supercritical fluids (above their critical point), and deep eutectic solvents (formed by mixing two or more components), offer alternatives to conventional organic solvents for bio-oil extraction. These solvents are characterized by being non-toxic, non-volatile, recyclable, and biodegradable.
  • 2.8K
  • 16 Aug 2023
Topic Review
Microgrid Applications
Microgrids need control and management at different levels to allow the inclusion of renewable energy sources. In this paper, a comprehensive literature review is presented to analyse the latest trends in research and development referring to the applications of predictive control in microgrids. As a result of this review, it was found that the application of predictive control techniques on microgrids is performed for the three control levels and with adaptations of the models in order to include uncertainties to improve their performance and dynamics response. In addition, to ensure system stability, but also, at higher control levels, coordinated operation among the microgrid’s components and synchronised and optimised operation with utility grids and electric power markets. Predictive control appears as a very promising control scheme with several advantages for microgrid applications of different control levels.
  • 2.8K
  • 28 Oct 2020
Topic Review
ECM decellularization methods
The extracellular matrix (ECM) is a complex network with multiple functions, including specific functions during tissue regeneration. Precisely, the properties of the ECM have been thoroughly used in tissue engineering and regenerative medicine research, aiming to restore the function of damaged or dysfunctional tissues. Tissue decellularization is gaining momentum as a technique to obtain potentially implantable decellularized extracellular matrix (dECM) with well-preserved key components. Interestingly, the tissue-specific dECM is becoming a feasible option to carry out regenerative medicine research, with multiple advantages compared to other approaches. We recently published an overview of the most common methods used to obtain the dECM from specific tissues[1]. Here we provide a summary from that report as a helpful guide for future research development.
  • 2.8K
  • 25 Aug 2020
Topic Review
Pickering Emulsion Characteristics and Measuring Techniques
Surfactant-based emulsions require high emulsifier concentrations for stability and often rely on multiple additives to address various factors, which makes the surfactant synthesis and utilization of emulsions quite challenging. Pickering emulsions, which utilize solid particles for emulsion stabilization, have emerged as a promising solution for reservoir conformance control.
  • 2.8K
  • 12 Sep 2023
Topic Review
Engine Control Unit
An engine control unit (ECU), also commonly called an engine control module (ECM) is a type of electronic control unit that controls a series of actuators on an internal combustion engine to ensure optimal engine performance. It does this by reading values from a multitude of sensors within the engine bay, interpreting the data using multidimensional performance maps (called lookup tables), and adjusting the engine actuators. Before ECUs, air–fuel mixture, ignition timing, and idle speed were mechanically set and dynamically controlled by mechanical and pneumatic means. If the ECU has control over the fuel lines, then it is referred to as an electronic engine management system (EEMS). The fuel injection system has the major role of controlling the engine's fuel supply. The whole mechanism of the EEMS is controlled by a stack of sensors and actuators.
  • 2.8K
  • 14 Oct 2022
Topic Review
Tesla Roadster (2008)
The Tesla Roadster is a battery electric vehicle (BEV) sports car, based on the Lotus Elise chassis, that was produced by the electric car firm Tesla Motors (now Tesla, Inc.) in California from 2008 to 2012. The Roadster was the first highway legal serial production all-electric car to use lithium-ion battery cells and the first production all-electric car to travel more than 320 kilometres (200 mi) per charge. It is also the first production car to be launched into orbit, carried by a Falcon Heavy rocket in a test flight on February 6, 2018. Tesla sold about 2,450 Roadsters in over 30 countries, and most of the last Roadsters were sold in Europe and Asia during the fourth quarter of 2012. Tesla produced right-hand-drive Roadsters from early 2010. The Roadster qualified for government incentives in several nations. According to the U.S. EPA, the Roadster can travel 393 kilometres (244 mi) on a single charge of its lithium-ion battery pack, and can accelerate from 0 to 97 km/h (0 to 60 mph) in 3.7 or 3.9 seconds depending on the model. It has a top speed of 201 km/h (125 mph). The Roadster's efficiency, (As of September 2008), was reported as 120 MPGe (2.0 L/100 km). It uses 135 Wh/km (21.7 kW·h/100 mi, 13.5 kW·h/100 km or 490 kJ/km) battery-to-wheel, and has an efficiency of 88% on average.
  • 2.8K
  • 11 Nov 2022
Topic Review
Unmanned Ground Vehicles
Unmanned ground vehicles (UGVs) have great potential in the application of both civilian and military fields, and have become the focus of research in many countries. Environmental perception technology is the foundation of UGVs, which is of great significance to achieve a safer and more efficient performance.
  • 2.8K
  • 22 Feb 2021
Topic Review
Shipbuilding Supply Chain 4.0
The supply chain is currently taking on a very important role in organizations seekingto improve the competitiveness and profitability of the company. Its transversal character mainly places it in an unbeatable position to achieve this role. This article, through a study of each of the key enabling technologies of Industry 4.0, aims to obtain a general overview of the current state of the art in shipbuilding adapted to these technologies. To do so, a systematic review of what the scientific community says is carried out, dividing each of the technologies into di erent categories. In addition, the global vision of countries interested in each of the enabling technologies is also studied. Both studies present a general vision to the companies of the concerns of the scientific community, thus encouraging research on the subject that is focused on the sustainability of theshipbuilding supply chain.
  • 2.7K
  • 14 Apr 2021
Topic Review
Graphene-Coating for Efficient Electronics Cooling
Thermal management is essential in electronics, as it improves reliability and enhances performance by removing heat generated by the devices. Thermal management of handheld systems such as laptops is becoming increasingly challenging due to increasing power dissipation. The power dissipated per unit area on the laptop electronic chips is increasing while the area of the chips itself it decreasing, resulting a high heat flux that causes an increase in temperature. The increasing temperature adversely affects the performance of laptops and in many cases leads to failure through such modes as thermal fatigue and dielectric breakdown. In this work, three dimensional steady state CFD model of a laptop motherboard is presented. The model accounts for heat transfer for both natural convection and radiation to the ambient air temperature. The present CFD study allow accurate, rapid, physical modelling to make decisions on materials, components and layout beside power control feedback to achieve performance and target lifetime with reduced testing requirements. An alternative design for the cooling of laptop microprocessor using only passive cooling is proposed. The results showed that the assembled a thin plate of a copper material coated with graphene and use it as a heat sinks with the microprocessor of the laptop providing an efficient and economical solution in thermal management. Considerable drop in microprocessor temperature is obtained through the heat dissipation path suggested in the new design. The proposed passive cooling solution has the advantages of fanless operation compared to the existing active cooling solutions such as the noise-free operation, lower energy consumption and higher reliability. We hope this work may open the way for huge boost in the technology of electric cooling by innovative manufacturing techniques.
  • 2.7K
  • 28 Oct 2020
Topic Review
Structure from Motion
Structure from Motion (SfM) is a photogrammetric range imaging technique for estimating three-dimensional structures from two-dimensional image sequences that may be coupled with local motion signals. It is studied in the fields of computer vision and visual perception. In biological vision, SfM refers to the phenomenon by which humans (and other living creatures) can recover 3D structure from the projected 2D (retinal) motion field of a moving object or scene.
  • 2.7K
  • 06 Oct 2022
  • Page
  • of
  • 649
Video Production Service