Topic Review
Supercritical Carbon Dioxide Flow and Heat Transfer Characteristics
Supercritical carbon dioxide (SCO2) is widely used in many fields of energy and power engineering, such as nuclear reactors, solar thermal power generation systems, and refrigeration systems. In practical applications, SCO2 undergoes a cooling process significantly when it is cooled near the pseudo–critical point.
  • 1.2K
  • 08 Dec 2022
Topic Review
Calcium Carbonate
Technologies for the management of various types of waste and the production of useful products from them are currently widely studied. Both carbon dioxide and calcium-rich waste from various production processes are problematic wastes that can be used to produce calcium carbonate. Therefore, the purpose of this paper is to provide an overview about the state of the development of processes that use these two wastes to obtain a valuable CaCO3 powder.
  • 1.2K
  • 15 Dec 2020
Topic Review
Applications of Water Mist Systems
Water mist systems have been proven to perform in many applications, such as enclosed compartments; open air; and large, well-ventilated spaces.
  • 1.2K
  • 07 Feb 2023
Topic Review
Propellant Depot
An orbital propellant depot is a cache of propellant that is placed in orbit around Earth or another body to allow spacecraft or the transfer stage of the spacecraft to be fueled in space. It is one of the types of space resource depots that have been proposed for enabling infrastructure-based space exploration. Many different depot concepts exist depending on the type of fuel to be supplied, location, or type of depot which may also include a propellant tanker that delivers a single load to a spacecraft at a specified orbital location and then departs. In-space fuel depots are not necessarily located near or at a space station. Potential users of in-orbit refueling and storage facilities include space agencies, defense ministries and communications satellite or other commercial companies. Satellite servicing depots would extend the lifetime of satellites that have nearly consumed all of their orbital maneuvering fuel and are likely placed in a geosynchronous orbit. The spacecraft would conduct a space rendezvous with the depot, or vice versa, and then transfer propellant to be used for subsequent orbital maneuvers. In 2011, Intelsat showed interest in an initial demonstration mission to refuel several satellites in geosynchronous orbit, but all plans have been since scrapped. A low earth orbit (LEO) depot's primary function would be to provide propellant to a transfer stage headed to the moon, Mars, or possibly a geosynchronous orbit. Since all or a fraction of the transfer stage propellant can be off-loaded, the separately launched spacecraft with payload and/or crew could have a larger mass or use a smaller launch vehicle. With a LEO depot or tanker fill, the size of the launch vehicle can be reduced and the flight rate increased—or, with a newer mission architecture where the beyond-Earth-orbit spacecraft also serves as the second stage, can facilitate much larger payloads—which may reduce the total launch costs since the fixed costs are spread over more flights and fixed costs are usually lower with smaller launch vehicles. A depot could also be placed at Earth-Moon Lagrange point 1 (EML-1) or behind the Moon at EML-2 to reduce costs to travel to the moon or Mars. Placing a depot in Mars orbit has also been suggested.
  • 1.2K
  • 22 Nov 2022
Topic Review
IoT-Enabled Smart Agriculture
The growth of the global population coupled with a decline in natural resources, farmland, and the increase in unpredictable environmental conditions leads to food security is becoming a major concern for all nations worldwide. These problems are motivators that are driving the agricultural industry to transition to smart agriculture with the application of the Internet of Things (IoT) and big data solutions to improve operational efficiency and productivity. The IoT integrates a series of existing state-of-the-art solutions and technologies, such as wireless sensor networks, cognitive radio ad hoc networks, cloud computing, big data, and end-user applications. IoT is defined as the network of all objects that are embedded within devices, sensors, machines, software and people through the Internet environment to communicate, exchange information and interact in order to provide a comprehensive solution between the real world and the virtual world.
  • 1.2K
  • 01 Apr 2022
Topic Review
Chlorella vulgaris Biomass
Chlorella vulgaris biomass means the biomass made of Chlorella vulgaris, which is a kind of microalgae. Under appropriate conditions, microalgae convert solar energy into chemical energy stored as starch or lipids, which are precursors for bioethanol and biodiesel production. Given the higher photosynthetic efficiency, higher biomass production per unit area and faster growth rate compared to energy crops, microalgae are good alternative as feedstock for biofuel production. An additional advantage of microalgae is the lack of competition for nutrients with food crops. Furthermore, biomass production can be located on marginal lands. The negative environmental impact associated with the cultivation of microalgae for energy purposes is described as potentially negligible.
  • 1.2K
  • 10 Sep 2021
Topic Review
Materials and Systems in Envelope Energy Retrofit
Materials, methods, and systems related to building envelope energy retrofit, these energy retrofit measures can be applied to building envelope systems and areas such as walls, roofs, windows, floors, façades, and air leakage, and they are applicable in the residential buildings sector as the dominant sector in energy-saving research studies. Three heat gain/loss mechanisms influence building envelope energy retrofit: conduction, convection, and radiation. Most retrofit methods applicable to transparent or translucent components were developed to deal with radiation by limiting the radiative heat transfers, for example, by applying window films over the existing glass.
  • 1.2K
  • 19 Jul 2022
Topic Review
Smart Building
Buildings are among the largest energy consumers in the world. As new technologies have been developed, great advances have been made in buildings, turning conventional buildings into smart buildings. These smart buildings have allowed for greater supervision and control of the energy resources within the buildings, taking steps to energy management strategies to achieve significant energy savings. The forecast of energy consumption in buildings has been a very important element in these energy strategies since it allows adjusting the operation of buildings so that energy can be used more efficiently.
  • 1.2K
  • 15 Dec 2020
Topic Review
Biofuel
A biofuel is a fuel that is produced through contemporary processes from biomass, rather than a fuel produced by the very slow geological processes involved in the formation of fossil fuels, such as oil. Since biomass technically can be used as a fuel directly (e.g. wood logs), some people use the terms biomass and biofuel interchangeably. More often than not, however, the word biomass simply denotes the biological raw material the fuel is made of, or some form of thermally/chemically altered solid end product, like torrefied pellets or briquettes. The word biofuel is usually reserved for liquid or gaseous fuels, used for transportation. The U.S. Energy Information Administration (EIA) follows this naming practice. If the biomass used in the production of biofuel can regrow quickly, the fuel is generally considered to be a form of renewable energy. Biofuels can be produced from plants (i.e. energy crops), or from agricultural, commercial, domestic, and/or industrial wastes (if the waste has a biological origin). Renewable biofuels generally involve contemporary carbon fixation, such as those that occur in plants or microalgae through the process of photosynthesis. Some argue that biofuel can be carbon-neutral because all biomass crops sequester carbon to a certain extent – basically all crops move CO2 from above-ground circulation to below-ground storage in the roots and the surrounding soil. For instance, McCalmont et al. found below-ground carbon accumulation ranging from 0.42 to 3.8 tonnes per hectare per year for soils below Miscanthus x giganteus energy crops, with a mean accumulation rate of 1.84 tonne (0.74 tonnes per acre per year), or 20% of total harvested carbon per year. However, the simple proposal that biofuel is carbon-neutral almost by definition has been superseded by the more nuanced proposal that for a particular biofuel project to be carbon neutral, the total carbon sequestered by the energy crop's root system must compensate for all the above-ground emissions (related to this particular biofuel project). This includes any emissions caused by direct or indirect land use change. Many first generation biofuel projects are not carbon neutral given these demands. Some have even higher total GHG emissions than some fossil based alternatives. Some are carbon neutral or even negative, though, especially perennial crops. The amount of carbon sequestrated and the amount of GHG (greenhouse gases) emitted will determine if the total GHG life cycle cost of a biofuel project is positive, neutral or negative. A carbon negative life cycle is possible if the total below-ground carbon accumulation more than compensates for the total life-cycle GHG emissions above ground. In other words, to achieve carbon neutrality yields should be high and emissions should be low. High-yielding energy crops are thus prime candidates for carbon neutrality. The graphic on the right displays two CO2 negative Miscanthus x giganteus production pathways, represented in gram CO2-equivalents per megajoule. The yellow diamonds represent mean values. Further, successful sequestration is dependent on planting sites, as the best soils for sequestration are those that are currently low in carbon. The varied results displayed in the graph highlights this fact. For the UK, successful sequestration is expected for arable land over most of England and Wales, with unsuccessful sequestration expected in parts of Scotland, due to already carbon rich soils (existing woodland) plus lower yields. Soils already rich in carbon includes peatland and mature forest. Grassland can also be carbon rich, and Milner et al. argue that the most successful carbon sequestration in the UK takes place below improved grasslands. The bottom graphic displays the estimated yield necessary to compensate for related lifecycle GHG-emissions. The higher the yield, the more likely CO2 negativity becomes. The two most common types of biofuel are bioethanol and biodiesel. Bioethanol is an alcohol made by fermentation, mostly from carbohydrates produced in sugar or starch crops such as corn, sugarcane, or sweet sorghum. Cellulosic biomass, derived from non-food sources, such as trees and grasses, is also being developed as a feedstock for ethanol production. Ethanol can be used as a fuel for vehicles in its pure form (E100), but it is usually used as a gasoline additive to increase octane and improve vehicle emissions. Bioethanol is widely used in the United States and in Brazil. Biodiesel is produced from oils or fats using transesterification and is the most common biofuel in Europe. It can be used as a fuel for vehicles in its pure form (B100), but it is usually used as a diesel additive to reduce levels of particulates, carbon monoxide, and hydrocarbons from diesel-powered vehicles. In 2018, worldwide biofuel production reached 152 billion liters (40 billion gallons US), up 7% from 2017, and biofuels provided 3% of the world's fuels for road transport. The International Energy Agency want biofuels to meet more than a quarter of world demand for transportation fuels by 2050, in order to reduce dependency on petroleum. However, the production and consumption of biofuels are not on track to meet the IEA's sustainable development scenario. From 2020 to 2030 global biofuel output has to increase by 10% each year to reach IEA's goal. Only 3% growth annually is expected. Here are some various social, economic, environmental and technical issues relating to biofuels production and use, which have been debated in the popular media and scientific journals.
  • 1.2K
  • 12 Oct 2022
Topic Review
Ballasted Track
Ballasted track has the phenomenon of local instabilities, which are usually related to the intensive sleeper void development that requires enormous maintenance costs and influences track reliability, availability and safety. The appearance of the void zones is unavoidable in such structures as transition zones, turnouts and rail joints. 
  • 1.2K
  • 19 Jul 2021
  • Page
  • of
  • 650
ScholarVision Creations