Topic Review
Loss-of-Coolant Accident
A loss-of-coolant accident (LOCA) is a mode of failure for a nuclear reactor; if not managed effectively, the results of a LOCA could result in reactor core damage. Each nuclear plant's emergency core cooling system (ECCS) exists specifically to deal with a LOCA. Nuclear reactors generate heat internally; to remove this heat and convert it into useful electrical power, a coolant system is used. If this coolant flow is reduced, or lost altogether, the nuclear reactor's emergency shutdown system is designed to stop the fission chain reaction. However, due to radioactive decay, the nuclear fuel will continue to generate a significant amount of heat. The decay heat produced by a reactor shutdown from full power is initially equivalent to about 5 to 6% of the thermal rating of the reactor. If all of the independent cooling trains of the ECCS fail to operate as designed, this heat can increase the fuel temperature to the point of damaging the reactor. Under operating conditions, a reactor may passively (that is, in the absence of any control systems) increase or decrease its power output in the event of a LOCA or of voids appearing in its coolant system (by water boiling, for example). This is measured by the coolant void coefficient. Most modern nuclear power plants have a negative void coefficient, indicating that as water turns to steam, power instantly decreases. Two exceptions are the Soviet RBMK and the Canadian CANDU. Boiling water reactors, on the other hand, are designed to have steam voids inside the reactor vessel. Modern reactors are designed to prevent and withstand loss of coolant, regardless of their void coefficient, using various techniques. Some, such as the pebble bed reactor, passively slow down the chain reaction when coolant is lost; others have extensive safety systems to rapidly shut down the chain reaction, and may have extensive passive safety systems (such as a large thermal heat sink around the reactor core, passively-activated backup cooling/condensing systems, or a passively cooled containment structure) that mitigate the risk of further damage.
  • 1.4K
  • 09 Oct 2022
Topic Review
Polymeric Membranes for CO2 Capture
CO2 capture from coal- or natural gas-derived flue gas has been widely considered as the next opportunity for the large-scale deployment of gas separation membranes.  Despite the tremendous progress made in the synthesis of polymeric membranes with high CO2/N2 separation performance, only a few membrane technologies were advanced to the bench-scale study or above from a highly idealized laboratory setting.  Therefore, recent progress in polymeric membranes is reviewed in the perspectives of capture system energetics, process synthesis, membrane scale-up, modular fabrication, and field tests.  These engineering considerations can provide a holistic approach to better guide membrane research and accelerate the commercialization of gas separation membranes for post-combustion carbon capture.
  • 1.4K
  • 08 Dec 2020
Topic Review Peer Reviewed
Metal Nanoparticles as Free-Floating Electrodes
Colloidal metal nanoparticles in an electrolyte environment are not only electrically charged but also electrochemically active objects. They have the typical character of metal electrodes with ongoing charge transfer processes on the metal/liquid interface. This picture is valid for the equilibrium state and also during the formation, growth, aggregation or dissolution of nanoparticles. This behavior can be understood in analogy to macroscopic mixed-electrode systems with a free-floating potential, which is determined by the competition between anodic and cathodic partial processes. In contrast to macroscopic electrodes, the small size of nanoparticles is responsible for significant effects of low numbers of elementary charges and for self-polarization effects as they are known from molecular systems, for example. The electrical properties of nanoparticles can be estimated by basic electrochemical equations. Reconsidering these fundamentals, the assembly behavior, the formation of nonspherical assemblies of nanoparticles and the growth and the corrosion behavior of metal nanoparticles, as well as the formation of core/shell particles, branched structures and particle networks, can be understood. The consequences of electrochemical behavior, charging and self-polarization for particle growth, shape formation and particle/particle interaction are discussed.
  • 1.4K
  • 13 Apr 2022
Topic Review
Solid Waste Management
Disposal of municipal solid waste (MSW) is one of the significant global issues that is more evident in developing nations. One of the key methods for disposing of the MSW is locating, assessing, and planning for landfill sites.  Due to rapidly expanding global urbanization, associated lack of resources, and inadequate urban waste management, MSW issues and management concerns are on the rise. Over a third of total municipal waste out of two billion tons generated remains uncollected worldwide. MSW is collected and disposed of at certain locations or burnt down in most developing nations. Landfill sites for solid waste must be inspected in terms of all requirements to reduce economic and environmental expenses.
  • 1.4K
  • 17 Jun 2022
Topic Review
Intelligent Unmanned Mining
Intelligent unmanned mining is the application of new generation of communication technology, Internet of Things (IoT), cloud computing, big data, artificial intelligence and other advanced technologies, intelligent mining and transportation equipment are taked such as coal mining machine, hydraulic support, scraper conveyor, loader, crusher, belt conveyor with autonomous perception, autonomous decision-making and autonomous control execution ability, the comprehensive intelligent control system as the core, and uses visual remote monitoring or adaptive intelligent planning mining as a means, the safe and efficient comprehensive intelligent coal mining method can realize the intelligent operation process of working face mining, support, coal transportation (working condition adaptive and process collaborative control) or one-click start-stop operation mode (including unmanned follow-up operation and safe patrol).
  • 1.4K
  • 19 Feb 2022
Topic Review
Robust Outlier-Adaptive Filtering
With the advent of unmanned aerial vehicles (UAVs), a major area of interest in the research field of UAVs has been vision-aided inertial navigation systems (V-INS). In the front-end of V-INS, image processing extracts information about the surrounding environment and determines features or points of interest. With the extracted vision data and inertial measurement unit (IMU) dead reckoning, the most widely used algorithm for estimating vehicle and feature states in the back-end of V-INS is an extended Kalman filter (EKF). An important assumption of the EKF is Gaussian white noise. In fact, measurement outliers that arise in various realistic conditions are often non-Gaussian. A lack of compensation for unknown noise parameters often leads to a serious impact on the reliability and robustness of these navigation systems. To compensate for uncertainties of the outliers, we require modified versions of the estimator or the incorporation of other techniques into the filter. The main purpose of this paper is to develop accurate and robust V-INS for UAVs, in particular, those for situations pertaining to such unknown outliers. Feature correspondence in image processing front-end rejects vision outliers, and then a statistic test in filtering back-end detects the remaining outliers of the vision data. For frequent outliers occurrence, variational approximation for Bayesian inference derives a way to compute the optimal noise precision matrices of the measurement outliers. The overall process of outlier removal and adaptation is referred to here as “outlier-adaptive filtering”. Even though almost all approaches of V-INS remove outliers by some method, few researchers have treated outlier adaptation in V-INS in much detail. Here, results from flight datasets validate the improved accuracy of V-INS employing the proposed outlier-adaptive filtering framework.
  • 1.4K
  • 30 Oct 2020
Topic Review
Emgrand EC7
The Geely Emgrand or originally, the Emgrand EC7 is a compact car produced by the Emgrand division of the Chinese automaker Geely. After the discontinuation of the "Emgrand" brand, Emgrand EC7 was renamed to Geely Emgrand in 2014. The second generation Geely Emgrand was shown to public in 2014 Beijing Auto Show.
  • 1.4K
  • 23 Nov 2022
Topic Review
The Method of 3D Printing in Clothing
Clothing is considered to be an important element of human social activities. With the increasing maturity of 3D printing technology, functional 3D printing technology can realize the perfect combination of clothing and electronic devices while helping smart clothing to achieve specific functions. Furthermore, the application of functional 3D printing technology in clothing not only provides people with the most comfortable and convenient wearing experience, but also completely subverts consumers’ perception of traditional clothing. 
  • 1.4K
  • 01 Nov 2022
Topic Review
Duplex Steels
Welded structures made of duplex steels are used in building applications due to their resistance to local corrosion attack initiated by chlorides. In this entry, the material and technological factors determining the corrosion resistance of such steels are discussed in detail. 
  • 1.4K
  • 28 Mar 2022
Topic Review
Low-Cost Doppler Radar Structural Monitoring
Low-Cost Microwave Doppler Radar Systems is an alternative noncontact solution for structural condition monitoring. In addition, by leveraging their capability of providing the target velocity information, the radar-based remote monitoring of complex rotating structures can also be accomplished. Modern radar systems are compact, able to be easily integrated in sensor networks, and can deliver high accuracy measurements.
  • 1.4K
  • 05 Jul 2021
  • Page
  • of
  • 650
ScholarVision Creations