Topic Review
Edible Flowers
Edible flowers have been widely consumed for ages until now. The attractive colors and shapes, exotic aroma, and delightful taste make edible flowers very easy to attain. Moreover, they also provide health benefits for consumers due to the unique composition and concentration of antioxidant compounds in the matrices. Knowing the bioactive compounds and their functional properties from edible flowers is necessary to diversify the usage and reach broader consumers.
  • 789
  • 01 Jun 2021
Topic Review
Echinacea purpurea L. (Moench) Hemagglutinin
Echinacea purpurea L. (Moench) is used in traditional and conventional medicine. However, there is lack of data on the biological activities of primary plant metabolite lectins. The aim of our experiment was to find out how lectin LysM (lysine motif), which was previously purified, affects the immune response in vivo. Eight-week-old BALB/c male mice (n = 15) received four weekly 250 μg/kg peritonial injections of purified Echinacea purpurea L. (Moench) roots’ LysM lectin. The control animal group (n = 15) received 50 μL peritoneal injections of fresh Echinacea purpurea L. (Moench) root tincture, and the negative control animal group (n = 15) received 50 μL peritoneal injections of physiological solution. At the fifth experimental week, the animals were sedated with carbon dioxide, and later euthanized by cervical dislocation, and then their blood and spleen samples were collected. The leukocytes’ formula and lymphocytes’ count was estimated in blood samples, the T lymphocytes’ density was evaluated in spleen zones. A statistically significant (p < 0.05) difference between each group was observed in the leukocytes’ formula (monocytes’ percentage, also little, medium and giant size lymphocytes). The purple coneflower fresh roots’ tincture significantly decreased (p < 0.05) the T lymphocytes’ quantity in peritoneal lymphoid sheaths (PALS) compared with the physiological solution injection’s group (p < 0.05) and the lectin injection’s group (p < 0.001). Meanwhile, lectin injections caused a significant (p < 0.01) increase in the T lymphocytes in a spleen PALS zone, compared with the physiological solution and tincture injection’s group. Our data suggests that LysM lectin acts as an immunostimulant, while fresh purple coneflower tincture causes immunosuppression.
  • 343
  • 15 Jun 2021
Topic Review
Drugs of the Kallikrein–Kinin System
The kallikrein–kinin system consists of the two kininogen substrates present in the blood plasma, and two serine proteases: the plasma and tissue kallikreins. The action of the latter on kininogens produces small peptides, the kinins, short-lived, but endowed by powerful pharmacologic actions on blood vessels and other tissues. Several classes of drugs alter kinin formation or action at their receptors for a therapeutic benefit.
  • 496
  • 17 Jul 2023
Topic Review
Drug–Food Interactions of DOACs
In recent years direct oral anticoagulants (DOACs) have become the anticoagulant treatment of choice. DOACs were initially considered drugs with no significant food interactions; however, clinical observations from daily practice have proved otherwise as interactions with food ingredients have been reported. Food, dietary supplements or herbs may contain substances that, when administered concomitantly with DOACs, can potentially affect the plasma concentration of the drugs. 
  • 1.4K
  • 27 Aug 2021
Topic Review
Drug–Drug Interactions Involving Dexamethasone in Clinical Practice
Concomitant administration of multiple drugs frequently causes severe pharmacokinetic or pharmacodynamic drug–drug interactions (DDIs) resulting in the possibility of enhanced toxicity and/or treatment failure. The activity of cytochrome P450 (CYP) 3A4 and P-glycoprotein (P-gp), a drug efflux pump sharing localization and substrate affinities with CYP3A4, is a critical determinant of drug clearance, interindividual variability in drug disposition and clinical efficacy, and appears to be involved in the mechanism of numerous clinically relevant DDIs, including those involving dexamethasone. The recent increase in the use of high doses of dexamethasone during the COVID-19 pandemic have emphasized the need for better knowledge of the clinical significance of drug–drug interactions involving dexamethasone in the clinical setting. 
  • 142
  • 18 Dec 2023
Topic Review
Drug Therapies for Diabetes
The treatment of type 2 diabetes (T2D) necessitates a multifaceted approach that combines behavioral and pharmacological interventions to mitigate complications and sustain a high quality of life. Treatment encompasses the management of glucose levels, weight, cardiovascular risk factors, comorbidities, and associated complications through medication and lifestyle adjustments. Metformin, a standard in diabetes management, continues to serve as the primary, first-line oral treatment across all age groups due to its efficacy, versatility in combination therapy, and cost-effectiveness. Glucagon-like peptide-1 receptor agonists (GLP-1 RA) offer notable benefits for HbA1c and weight reduction, with significant cardiovascular benefits. Sodium-glucose cotransporter inhibitors (SGLT-2i) lower glucose levels independently of insulin while conferring notable benefits for cardiovascular, renal, and heart-failure outcomes. Combined therapies emphasizing early and sustained glycemic control are promising options for diabetes management. As insulin therapy remains pivotal, metformin and non-insulin agents such as GLP-1 RA and SGLT-2i offer compelling options. Notably, exciting novel treatments like the dual GLP-1/ glucose-dependent insulinotropic polypeptide (GIP) agonist show promise for substantially reducing glycated hemoglobin and body weight.
  • 291
  • 03 Jan 2024
Topic Review
Drug Response Diversity
Interindividual heterogeneity in response to treatment is a real public health problem. It is a factor that can be responsible not only for ineffectiveness or fatal toxicity but also for hospitalization due to iatrogenic effects, thus increasing the cost of patient care. Several research teams have been interested in what may be at the origin of these phenomena, particularly at the genetic level and the basal activity of organs dedicated to the inactivation and elimination of drug molecules. Today, a new branch is being set up, explaining the enigmatic part that could not be explained before. Pharmacomicrobiomics attempts to investigate the interactions between bacteria, especially those in the gut, and drug response.
  • 344
  • 07 May 2021
Topic Review
Drug Resistance in Cancer Chemotherapy
Cancer is one of the main causes of death worldwide. Despite the significant development of methods of cancer healing during the past decades, chemotherapy still remains the main method for cancer treatment. Multidrug resistance (MDR) is responsible for over 90% of deaths in cancer patients receiving traditional chemotherapeutics or novel targeted drugs. The mechanisms of MDR include elevated metabolism of xenobiotics, enhanced efflux of drugs, growth factors, increased DNA repair capacity, and genetic factors (gene mutations, amplifications, and epigenetic alterations). Rapidly increasing numbers of biomedical studies are focused on designing chemotherapeutics that are able to evade or reverse MDR.
  • 1.4K
  • 28 Oct 2020
Topic Review
Drug Interaction of Sorafenib and Morphine
A combination of the tyrosine kinase inhibitor—sorafenib—and the opioid analgesic—morphine—can be found in the treatment of cancer patients. Since both are substrates of P-glycoprotein (P-gp), and sorafenib is also an inhibitor of P-gp, their co-administration may affect their pharmacokinetics, and thus the safety and efficacy of cancer therapy. 
  • 396
  • 23 Dec 2021
Topic Review
Drug Discovery Research around Tetanus Toxin Fragment C
Tetanus caused by the tetanus toxin (TT) is a fatal illness, which despite the existence of a vaccine, led to an estimated 34,684 deaths in 2019. TT is a neurotoxin produced by Clostridium tetani, a Gram-positive pathogenic bacterium, mainly found in soil and the gastrointestinal tracts of animals. TT induces the inhibition of neurotransmitter release, leading to spastic paralysis in a four-step process. First, TT binds to specific receptors, mainly composed of lipids and gangliosides, found at the neuromuscular junction (NMJ). Another receptor is reached by TT after these first bindings: a protein receptor responsible for its internalization (second step). This double receptor binding is responsible for the high affinity between TT and nerve cells. Third, TT is then transported into the cell body via axonal retrograde transport. In the last step, the proteolytic cleavage by TT of the VAMP/synaptobrevin, a neuronal substrate, leads to the inhibition of neurotransmitter release. All of these biological properties can be distinct associated parts of the TT structure. TT is a 150.7 kDa protein composed of a 52.4 kDa light chain and a 98.3 kDa heavy chain linked by a disulfide bond.
  • 687
  • 26 Aug 2022
  • Page
  • of
  • 106
Video Production Service