Topic Review
Extracellular Vesicle
Extracellular vesicles (EVs) are constituted by a group of heterogeneous membrane vesicles secreted by most cell types that play a crucial role in cell–cell communication.
  • 1.0K
  • 25 Mar 2021
Topic Review
Experimental Pharmacotherapy for Non-Alcoholic Fatty Liver Disease
Non-alcoholic fatty liver disease (NAFLD) includes a range of chronic conditions characterized by excessive hepatic lipid accumulation, defined by the presence of steatosis in >5% of hepatocytes, in the absence of significant alcohol consumption or other causes of liver injury.
  • 646
  • 14 Feb 2022
Topic Review
Exosomes in Neurodegenerative Diseases
Exosomes are small bilipid layer enclosed extracellular vesicles, which were once considered as a cellular waste and functionless. These nano-vesicles of 30–150 nm in diameter carry specific proteins, lipids, functional mRNAs, and high amounts of non-coding RNAs (miRNAs, lncRNAs, and circRNAs). As the exosomes content is known to vary as per their originating and recipient cells, these vesicles can be utilized as a diagnostic biomarker for early disease detection. 
  • 545
  • 19 Jan 2021
Topic Review
Exosomes for Drug Delivery
Particular interest among the scientific community is focused on exploring the use of exosomes for several pharmaceutical and biomedical applications. This is due to the identification of the role of exosomes as an excellent intercellular communicator by delivering the requisite cargo comprising of functional proteins, metabolites and nucleic acids. Exosomes are the smallest extracellular vesicles (EV) with sizes ranging from 30–100 nm and are derived from endosomes. Exosomes have similar surface morphology to cells and act as a signal transduction channel between cells. They encompass different biomolecules, such as proteins, nucleic acids and lipids, thus rendering them naturally as an attractive drug delivery vehicle. Like the other advanced drug delivery systems, such as polymeric nanoparticles and liposomes to encapsulate drug substances, exosomes also gained much attention in enhancing therapeutic activity. Exosomes present many advantages, such as compatibility with living tissues, low toxicity, extended blood circulation, capability to pass contents from one cell to another, non-immunogenic and special targeting of various cells, making them an excellent therapeutic carrier. Exosome-based molecules for drug delivery are still in the early stages of research and clinical trials. The problems and clinical transition issues related to exosome-based drugs need to be overcome using advanced tools for better understanding and systemic evaluation of exosomes.
  • 764
  • 21 Nov 2022
Topic Review Video
Exosomes as Nanosystems of Nucleic Acids and Drugs
Exosomes are defined as a type of extracellular vesicle released when multivesicular bodies of the endocytic pathway fuse with the plasma membrane. They are characterized by their role in extracellular communication, partly due to their composition, and present the ability to recognize and interact with cells from the immune system, enabling an immune response. Their targeting capability and nanosized dimensions make them great candidates for cancer therapy. As chemotherapy is associated with cytotoxicity and multiple drug resistance, the use of exosomes targeting capabilities, able to deliver anticancer drugs specifically to cancer cells, is a great approach to overcome these disadvantages. 
  • 493
  • 21 Nov 2022
Topic Review
Exosome-Based Drug Delivery in Lupus
Exosomes are lipid-bilayer-enclosed extracellular vesicles released by many cell types in both normal and pathological conditions, and which transport nucleic acids, lipids and proteins between cells. Due to their suitable proprieties, as well as their known therapeutic effects, exosome-based nanocarriers have a bright future as next-generation drug delivery vehicles.
  • 619
  • 18 Mar 2021
Topic Review
Exosomal-based Drug Delivery
Exosomes are membrane-bound nanovesicles that are typically 30–150 nm in size with various bioactive molecules. They are typically generated by first endocytosing various transmembrane proteins into endosomes within the cell, which are then sorted and form intraluminal vesicles. These vesicles are then released as the endosome merges with the cell membrane and releases its contents outside of the cell. Tetraspanins (CD9, CD63, CD81) are one of the most common proteins expressed on the surface of exosomes and are often used as exosome-specific markers. These proteins have been shown to interact with different proteins such as integrins and major histocompatibility complexes (MHC). Exosomes commonly act as carriers of genetic and proteomic information, and are therefore vital in intercellular communication. In its role as a cellular messenger, exosomes have been implicated in promoting cancer; because of this, they are also being investigated as potential therapeutic targets and delivery vehicles. 
  • 1.1K
  • 06 Jun 2021
Topic Review
Excipients Used for Modified Nasal Drug Delivery
Intranasal absorption is a favored route because it avoids the gastrointestinal and hepatic metabolism, leading to an increase in drug bioavailability, and a reduction in the side effects and the required dose administered. The ongoing challenging task in the field of nasal drug delivery is the maintenance of an efficient concentration of the active substance in the target area for an adequate period of time. 
  • 985
  • 27 Sep 2022
Topic Review
Eugenol-based O/W Emulsion by Low-energy Emulsification
Emulsions are systems formed by two immiscible liquids, one of which is dispersed in the other as droplets with a relative stability. These have multiple applications, among them, in the formulation of pharmaceutical and cosmetic products. Its preparation requires generating a large interfacial area, which is usually attained by using the physicochemical formulation know-how on surfactant-oil-water (SOW) systems. Among the applications in the pharmaceutical industry, topical creams, and emulsions for intravenous and for oral administration can be found.  Eugenol can be extracted from cloves (Syzygium aromaticum) by various methods, including steam distillation, hydrodistillation and Soxhlet extraction. Furthermore, emulsions based on eugenol can be obtained for a variety of applications, including as topical and oral anesthetic. Nanoemulsions can be formulated with a mixture of non-ionic surfactants Span 20/Tween 80 at an HLB of 11 to 13 and a total surfactant concentration of 4%, using the dilution phase transition method (so-called spontaneous emulsification) to attain stable O/W eugenol-based emulsions. Paraffin oil/eugenol ratio of 4/1 can be used to reach a final emulsion internal oil phase content of 10% with 4% surfactant and 86% aqueous phase. Different polymers are used as viscosifiers, including carboxymethylcellulose. Under these conditions, eugenol-based emulsions with an average droplet size of less than 2 μm can be attained, with topical and oral anesthetic characteristics.
  • 1.8K
  • 03 Apr 2022
Topic Review
Eudragit® Based Copolymer for Smart Healthcare
Eudragit, synthesized by radical polymerization, is used for enteric coating, precise temporal release, and targeting the entire gastrointestinal system. Evonik Healthcare Germany offers different grades of Eudragit. The ratio of methacrylic acid to its methacrylate-based monomers used in the polymerization reaction defines the final product’s characteristics and consequently its potential range of applications.
  • 644
  • 22 May 2023
  • Page
  • of
  • 106
Video Production Service