Topic Review
Antioxidant Nutraceuticals against Neurodegenerative Disease
This entry discusses on selected nutraceuticals and their plausible antioxidant effects on Alzheimer and Parkinson disease. Nutraceuticals such as resveratrol, curcumin and vitamin E alleviate oxidative stress by scavenging free radicals, metal chelators, and enhance antioxidant enzymes. Additionally they regulate intracellular signaling such as inflammatory, survival and apoptotic pathways. 
  • 866
  • 28 Sep 2021
Topic Review
Antioxidant of Dietary Vitamins A, C, and E
Non-enzymatic antioxidants, which include vitamin A, vitamin C, and vitamin E, are commonly used dietary supplements for general health purposes. Given their safe profile and potential link with a decreased risk of cancer, they represent an attractive option as preventive anti-cancer agents.
  • 944
  • 03 Apr 2023
Topic Review
Antioxidant Phytochemicals in HIV+ Patients
Human immunodeficiency virus (HIV) infection has continued to be the subject of study since its discovery nearly 40 years ago. Significant advances in research and intake of antiretroviral therapy (ART) have slowed the progression and appearance of the disease symptoms and the incidence of concomitant diseases, which are the leading cause of death in HIV+ persons.
  • 381
  • 01 Jun 2022
Topic Review
Antioxidant Properties of Second-Generation Antipsychotics
Recent studies suggest a primary role of oxidative stress in an early phase of the pathogenesis of schizophrenia and a strong neurobiological link has been found between dopaminergic system dysfunction, microglia overactivation, and oxidative stress. Different risk factors for schizophrenia increase oxidative stress phenomena raising the risk of developing psychosis. Oxidative stress induced by first-generation antipsychotics such as haloperidol significantly contributes to the development of extrapyramidal side effects. Haloperidol also exerts neurotoxic effects by decreasing antioxidant enzyme levels then worsening pro-oxidant events. Opposite to haloperidol, second-generation antipsychotics (or atypical antipsychotics) such as risperidone, clozapine, and olanzapine exert a strong antioxidant activity in experimental models of schizophrenia by rescuing the antioxidant system, with an increase in superoxide dismutase and glutathione (GSH) serum levels. Second-generation antipsychotics also improve the antioxidant status and reduce lipid peroxidation in schizophrenic patients. Interestingly, second-generation antipsychotics, such as risperidone, paliperidone, and in particular clozapine, reduce oxidative stress induced by microglia overactivation, decreasing the production of microglia-derived free radicals, finally protecting neurons against microglia-induced oxidative stress. Further, long-term clinical studies are needed to better understand the link between oxidative stress and the clinical response to antipsychotic drugs and the therapeutic potential of antioxidants to increase the response to antipsychotics. 
  • 750
  • 03 Feb 2021
Topic Review
Antioxidant Protection against Trastuzumab Cardiotoxicity in Breast Cancer
Breast cancer is the most frequent malignant neoplastic disease in women, with an estimated 2.3 million cases in 2020 worldwide. Trastuzumab is part of the monoclonal antibodies used as targeted therapy against HER2 receptor, whose major problem is its cardiac safety profile, where it has been associated with cardiotoxicity. The appearance of cardiotoxicity is an indication to stop therapy.
  • 313
  • 20 Feb 2023
Topic Review
Antioxidant Supplements and Type 2 Diabetes Prevention
Oxidative stress (OxS) is a physiologically significant alteration in redox status resulting from the overproduction of reactive species and or the reduction in antioxidant defenses. Oxidative stress (OxS) has emerged as a likely initiating factor in T2D. Antioxidant supplements may act to slow or prevent T2D by multiple mechanisms, i.e., (1) reducing mitochondrial oxidative stress, (2) preventing the damaging effects of lipid peroxidation, and (3) acting as essential cofactors for antioxidant enzymes. 
  • 414
  • 01 Jun 2023
Topic Review
Antioxidant Therapies in TBI
Due to a multiplicity of causes provoking traumatic brain injury (TBI), TBI is a highly heterogeneous pathology, characterized by high mortality and disability rates. TBI is an acute neurodegenerative event, potentially and unpredictably evolving into sub-chronic and chronic neurodegenerative events, with transient or permanent neurologic, cognitive, and motor deficits, for which no valid standardized therapies are available. A vast body of literature demonstrates that TBI-induced oxidative/nitrosative stress is involved in the development of both acute and chronic neurodegenerative disorders. Cellular defenses against this phenomenon are largely dependent on low molecular weight antioxidants, most of which are consumed with diet or as nutraceutical supplements. A large number of studies have evaluated the efficacy of antioxidant administration to decrease TBI-associated damage in various animal TBI models and in a limited number of clinical trials. Points of weakness of preclinical studies are represented by the large variability in the TBI model adopted, in the antioxidant tested, in the timing, dosages, and routes of administration used, and in the variety of molecular and/or neurocognitive parameters evaluated. The analysis of the very few clinical studies does not allow strong conclusions to be drawn on the real effectiveness of antioxidant administration to TBI patients. Standardizing TBI models and different experimental conditions, as well as testing the efficacy of administration of a cocktail of antioxidants rather than only one, should be mandatory. According to some promising clinical results, it appears that sports-related concussion is probably the best type of TBI to test benefits of antioxidant administration.
  • 460
  • 08 Apr 2021
Topic Review
Antioxidant Therapy in Oxidative Stress-Induced Neurodegenerative Diseases
Free radicals are formed as a part of normal metabolic activities but are neutralized by the endogenous antioxidants present in cells/tissue, thus maintaining the redox balance. This redox balance is disrupted in certain neuropathophysiological conditions, causing oxidative stress, which is implicated in several progressive neurodegenerative diseases. Following neuronal injury, secondary injury progression is also caused by excessive production of free radicals. Highly reactive free radicals, mainly the reactive oxygen species (ROS) and reactive nitrogen species (RNS), damage the cell membrane, proteins, and DNA, which triggers a self-propagating inflammatory cascade of degenerative events. Dysfunctional mitochondria under oxidative stress conditions are considered a key mediator in progressive neurodegeneration. Exogenous delivery of antioxidants holds promise to alleviate oxidative stress to regain the redox balance.
  • 1.1K
  • 24 Feb 2022
Topic Review
Antioxidant-Based Therapies in Male Infertility
Under physiological conditions, reactive oxygen species (ROS) play pivotal roles in various processes of human spermatozoa. Indeed, semen requires the intervention of ROS to accomplish different stages of its maturation. However, ROS overproduction is a well-documented phenomenon occurring in the semen of infertile males, potentially causing permanent oxidative damages to a vast number of biological molecules (proteins, nucleic acids, polyunsaturated fatty acids of biological membrane lipids), negatively affecting the functionality and vitality of spermatozoa. ROS overproduction may concomitantly occur to the excess generation of reactive nitrogen species (RNS), leading to oxidative/nitrosative stress and frequently encountered in various human pathologies. Under different conditions of male infertility, very frequently accompanied by morpho-functional anomalies in the sperm analysis, several studies have provided evidence for clear biochemical signs of damages to biomolecules caused by oxidative/nitrosative stress. In the last decades, various studies aimed to verify whether antioxidant-based therapies may be beneficial to treat male infertility have been carried out.
  • 764
  • 04 Mar 2021
Topic Review
Antioxidant/Anti-Inflammatory Effects of Garlic in Ischemic Stroke
Stroke represents one of the main causes of death and disability in the world; despite this, pharmacological therapies against stroke remain insufficient. Ischemic stroke is the leading etiology of stroke. Different molecular mechanisms, such as excitotoxicity, oxidative stress, and inflammation, participate in cell death and tissue damage. At a preclinical level, different garlic compounds have been evaluated against these mechanisms. Additionally, there is evidence supporting the participation of garlic compounds in other mechanisms that contribute to brain tissue recovery, such as neuroplasticity. After ischemia, neuroplasticity is activated to recover cognitive and motor function. Some garlic-derived compounds and preparations have shown the ability to promote neuroplasticity under physiological conditions and, more importantly, in cerebral damage models. 
  • 278
  • 25 Dec 2023
  • Page
  • of
  • 1352
ScholarVision Creations