Topic Review
CD163
In ischemic stroke patients, a higher monocyte count is associated with disease severity and worse prognosis. The complex correlation between subset phenotypes and functions underscores the importance of clarifying the role of monocyte subpopulations. We examined the subtype-specific distribution of the CD163+ and CD80+ circulating monocytes and evaluated their association with the inflammatory status in 26 ischemic stroke patients and 16 healthy controls.
  • 798
  • 15 Jul 2021
Topic Review
Microbiota–Gut–Brain Axis
More research has recently focused on the role of the gut microbiota in the development or course of numerous diseases, including non-communicable diseases. As obesity remains prevalent, the question arises as to what microbial changes are associated with increased obesity prevalence and what kind of prevention and treatment approaches it could provide.
  • 798
  • 05 Jan 2021
Topic Review
HMGB1-Mediated Neuroinflammatory Responses
Brain injuries are devastating conditions, representing a global cause of mortality and morbidity, with no effective treatment to date. Increased evidence supports the role of neuroinflammation in driving several forms of brain injuries. High mobility group box 1 (HMGB1) protein is a pro-inflammatory-like cytokine with an initiator role in neuroinflammation that has been implicated in Traumatic brain injury (TBI) as well as in early brain injury (EBI) after subarachnoid hemorrhage (SAH). Herein, we discuss the implication of HMGB1-induced neuroinflammatory responses in these brain injuries, mediated through binding to the receptor for advanced glycation end products (RAGE), toll-like receptor4 (TLR4) and other inflammatory mediators. Moreover, we provide evidence on the biomarker potential of HMGB1 and the significance of its nucleocytoplasmic translocation during brain injuries along with the promising neuroprotective effects observed upon HMGB1 inhibition/neutralization in TBI and EBI induced by SAH. Overall, this review addresses the current advances on neuroinflammation driven by HMGB1 in brain injuries indicating a future treatment opportunity that may overcome current therapeutic gaps.
  • 798
  • 23 Jul 2020
Topic Review
High-Fat Diet and Small Intestine
The high-fat diet (HFD) of western countries has dramatic effect on the health of several organs, including the digestive tract, leading to the accumulation of fats that can also trigger a chronic inflammatory process, such as that which occurs in non-alcohol steatohepatitis. The effects of a HFD on the small intestine, the organ involved in the absorption of this class of nutrients, are still poorly investigated.
  • 798
  • 19 Jul 2021
Topic Review
Marine Resources for COVID-19 Treatment
Marine resources have significant pharmacological potential in combatting various diseases, such as COVID-19. The wide variety of marine bioactive compounds and their implications are extensive. Micro and macro-organisms produce inorganic polyphosphates, sulfated polysaccharides, Bromotyrosines and many more. These compounds possess unique properties that allow them to combat Sars-Cov-2 infection, proving as efficacious potential therapeutics. Despite the challenges faced, marine organisms serve as a promising avenue for future pharmacological intervention. The present review for the first time highlights marine bioactive compounds, their sources, and their anti-viral mechanisms of action, with a focus on potential COVID-19 treatment.
  • 798
  • 27 Jul 2021
Topic Review
Immunotherapy in ACC
Adrenocortical carcinoma (ACC) is a rare cancer of the adrenal gland that is frequently associated with excess production of adrenal hormones. Although surgical resection may be curative in early-stage disease, few effective therapeutic options exist in the inoperable advanced or metastatic setting. Immunotherapies, inclusive of a broad array of immune-activating and immune-modulating antineoplastic agents, have demonstrated clinical benefit in a wide range of solid and hematologic malignancies. Immunotherapies that have been evaluated in clinical trials for ACC include the immune checkpoint inhibitors pembrolizumab, nivolumab, and avelumab. Other immunotherapies that have been evaluated include the monoclonal antibodies figitumumab and cixutumumab directed against the ACC-expressed insulin-like growth factor 1 (IGF-1) receptor, the recombinant cytotoxin interleukin-13-pseudomonas exotoxin A, and autologous tumor lysate dendritic cell vaccine.
  • 798
  • 08 Jun 2021
Topic Review
CAF-Derived MicroRNA on Tumor
Cancer-associated fibroblasts (CAFs), prominent cell components of the tumor microenvironment (TME) in most types of solid tumor, play an essential role in tumor cell growth, proliferation, invasion, migration, and chemoresistance. MicroRNAs (miRNAs) are small, non-coding, single-strand RNAs that negatively regulate gene expression by post-transcription modification. Increasing evidence has suggested the dysregulation of miRNAs in CAFs, which facilitates the conversion of normal fibroblasts (NFs) into CAFs, then enhances the tumor-promoting capacity of CAFs. To understand the process of tumor progression, as well as the development of chemoresistance, it is important to explore the regulatory function of CAF-derived miRNAs and the associated molecular mechanisms, which may become potential diagnostic and prognostic biomarkers and targets of anti-tumor therapeutics. In this review, we describe miRNAs that are differentially expressed by NFs and CAFs, summarize the modulating role of CAF-derived miRNAs in fibroblast activation and tumor advance, and eventually identify a potential clinical application for CAF-derived miRNAs as diagnostic/prognostic biomarkers and therapeutic targets in several tumors.
  • 798
  • 28 Jul 2021
Topic Review
Stingless Bee Honey as Antidepressant
Depression is a debilitating psychiatric disorder impacting an individual’s quality of life. Conventional treatments include tricyclic antidepressants (TCAs), norepinephrine–dopamine reuptake inhibitors (NDRIs), monoamine oxidase inhibitors (MAOIs), and serotonin reuptake inhibitors (SSRIs). Despite numerous pharmacological strategies utilising conventional drugs, the discovery of alternative medicines from natural products is a must for safer and beneficial brain supplement. Stingless bee honey (SBH) has been proven to contain a high level of antioxidants compared to other types of honey. 
  • 798
  • 30 Oct 2022
Topic Review
Immune Checkpoint Agents
Immune checkpoint inhibitors represent a promising treatment choice in many kind of tumours, including hepatocellular carcinoma (HCC). In this review, we provide an overview of the role of these new agents in the management of HCC according to the Barcelona staging system, alongside with a critical evaluation of the current status and future directions. Several clinical trials are focusing on the use of immunotherapy in HCC, alone or in combinations with antiangiogenetic agents as well as local treatment. However, the majority of those trials are still ongoing and, until now, only a few combinations were approved in the clinical practice from the regulatory authorities. Additionally, decisions about the choice of the right sequence of treatments in HCC patients in the light of the “continuum of care” principles, is still hard. In fact, it requires careful consideration in a multidisciplinary context in order to ensure a tailored treatment for each patient. 
  • 798
  • 09 Nov 2020
Topic Review
Bilirubin Glucuronide
Bilirubin glucuronide is a water-soluble reaction intermediate over the process of conjugation of indirect bilirubin. Bilirubin glucuronide itself belongs to the category of conjugated bilirubin along with bilirubin di-glucuronide. However, only the latter one is primarily excreted into the bile in the normal setting. Upon macrophages spot and phagocytize the effete Red Blood Corpuscles containing hemoglobin, unconjugated bilirubin is discharged from macrophages into the blood plasma. Most often, the free and water-insoluble unconjugated bilirubin which has an internal hydrodren bonding will bind to albumin and, to a much lesser extent, high density lipoprotein in order to decrease its hydrophobicity and to limit the probability of unnecessary contact with other tissues and keep bilirubin in the vascular space from traversing to extravascular space including brain, and from ending up increasing glomerular filtration. Nevertheless, there is still a little portion of indirect bilirubins stays free-of-bound. Free unconjugated bilirubin can poison the cerebrum. Finally, albumin leads the indirect bilirubin to the liver. In the liver sinusoid, albumin disassociates with the indirect bilirubin and returns to the circulation while the hepatocyte transfers the indirect bilirubin to ligandin and glucuronide conjugates the indirect bilirubin in the endoplasmic reticulum by disrupting unconjugated bilirubin's internal hydrogen bonding, which is the thing that makes indirect bilirubin having the property of eternal half-elimination life and insoluble in water, and by attaching two molecules of glucuronic acid to it in a two step process. The reaction is a transfer of two glucuronic acid groups including UDP glucuronic acid sequentially to the propionic acid groups of the bilirubin, primarily catalyzed by UGT1A1. In greater detail about this reaction, a glucuronosyl moiety is conjugated to one of the propionic acid side chains, located on the C8 and C12 carbons of the two central pyrrole rings of bilirubin. When the first step is completely done, the substrate bilirubin glucuronide (also known as mono-glucuronide) is born at this stage and is water-soluble and readily excreted in bile. Thereafter, so long as the second step of attachment of the other glucuronic acid to it succeeds (officially called "re-glucuronidated"), the substrate bilirubin glucuronide will turn into bilirubin di-glucuronide (8,12-diglucuronide) and be excreted into bile canaliculi by way of C-MOAT[note 1] and MRP2 as normal human bile along with a little amount of unconjugated bilirubin as much as only 1 to 4 percent of total pigments in normal bile. That means up to 96%-99% of bilirubin in the bile are conjugated. Normally, there is just a little conjugated bilirubin escapes into the general circulation. Nonetheless, in the setting of severe liver disease, a significantly greater number of conjugated bilirubin will leak into circulation and then dissolve into the blood[note 2] and thereby filtered by the kidney, and only a part of the leaked conjugated bilirubin will be re-absorbed in the renal tubules, the remainder will be present in the urine making it dark-colored.
  • 798
  • 12 Oct 2022
  • Page
  • of
  • 1353
ScholarVision Creations