Topic Review
Probiotics and Photobiomodulation
Multiple interconditioning between photobiomodulation (PBM), probiotics, and the human microbiota, their effects on the human body, and their implications for the management of viral infectious diseases is essential. Coupled complex PBM and probiotic interventions can control the microbiome, improve the activity of the immune system, and save the lives of people with immune imbalances. 
  • 809
  • 20 May 2021
Topic Review
Toxin Genes of Bacillus cereus
Bacillus cereus is a ubiquitous soil bacterium responsible for two types of food-associated gastrointestinal diseases. While the emetic syndrome is caused by the cyclic depsipeptide cereulide, proteinaceous enterotoxins provoke the diarrheal disease. Here, an overview on the distribution of the main toxin genes/operons ces (encoding cereulide), hbl (encoding the tripartite hemolysin BL), nhe (encoding the tripartite non-hemolytic enterotoxin), and cytK (encoding the single protein cytotoxin K) within the B. cereus group is given.
  • 809
  • 18 Feb 2021
Topic Review
Composition of Lipid–Polymer Hybrid Nanoparticles
Lipid nanoparticles (LNPs) are spherical vesicles composed of ionizable lipids that are neutral at physiological pH. Despite their benefits, unmodified LNP drug delivery systems have substantial drawbacks, including a lack of targeted selectivity, a short blood circulation period, and in vivo instability. lipid–polymer hybrid nanoparticles (LPHNPs) are the next generation of nanoparticles, having the combined benefits of polymeric nanoparticles and liposomes. LPHNPs are being prepared from both natural and synthetic polymers with various techniques, including one- or two-step methods, emulsification solvent evaporation (ESE) method, and the nanoprecipitation method. Varieties of LPHNPs, including monolithic hybrid nanoparticles, core–shell nanoparticles, hollow core–shell nanoparticles, biomimetic lipid–polymer hybrid nanoparticles, and polymer-caged liposomes, have been investigated for various drug delivery applications.
  • 809
  • 08 Sep 2023
Topic Review
Chronic Dexamethasone Treatment
Neuroinflammation has been correlated with the progress of neurodegeneration in many neuropathologies. Although glial cells have traditionally been considered to be protective, the concept of them as neurotoxic cells has recently emerged. Thus, a major unsolved question is the exact role of astroglia and microglia in neurodegenerative disorders. On the other hand, it is well known that glucocorticoids are the first choice to regulate inflammation and, consequently, neuroglial inflammatory activity. The objective of this study was to determine how chronic dexamethasone treatment influences the host immune response and to characterize the beneficial or detrimental role of glial cells. To date, this has not been examined using a natural neurodegenerative model of scrapie. With this aim, immunohistochemical expression of glial markers, prion protein accumulation, histopathological lesions and clinical evolution were compared with those in a control group. Although impact of dexamethasone administration on neuropathological lesions was not demonstrated and treatment did not seem to be clinically relevant to disease progress when clinical signs had already begun, the evident extension of survival in one case was hopeful. The findings presented in this study support a potential failure of astrocytes and a stimulation of phagocytosis of PrPsc deposits by microglia. Thus, it is evidenced here how the complex interaction between glial populations failed to compensate for brain damage in natural conditions, emphasizing the need for using natural models. Additionally, the data showed that modulation of neuroinflammation by anti-inflammatory drugs might become a research focus as a potential therapeutic target for prion diseases, similar to that considered previously for other neurodegenerative disorders classified as prion-like diseases.
  • 809
  • 28 Oct 2020
Topic Review
The Mechanisms for Bone Regeneration
The bone regeneration process has historically been studied with the repair of fracture as a unique ability of our body by restoring it to its pre-injured functions. In bone biology, homeostasis is regulated by two main cellular components: osteoblasts (bone-forming cells) and osteoclasts (bone-resorbing cells). Furthermore, various inflammatory cells and cytokines dynamically interact with these cells in bone environments, which are responsible for their repair capacity. For the bone regeneration process, previous studies have emphasized the role of osteoblasts with morphogen gradients such as bone morphogenetic proteins (BMPs).
  • 808
  • 19 Dec 2023
Topic Review
Fructose and the Liver
Fructose possesses an open-chain chemical conformation and is therefore much more reactive than glucose. Experimental studies have shown that a high fructose intake promotes oxidative stress, inflammation, higher serum uric acid levels, hypertriglyceridemia, higher systolic blood pressure, and insulin resistance(). In humans, the physiological impact depends on the formulation in which the fructose is consumed; consumption via solids and liquids differently affects microbiota composition, gut integrity, and liver toxicity.
  • 808
  • 12 Oct 2021
Topic Review
Microbial Metabolite Trimethylamine N-Oxide
Trimethylamine-N-oxide (TMAO) is one among a group of selective uremic toxins that may rise to high levels in the circulation or accumulate in various organs. Diet and microbiota each have a direct impact on many chronic, inflammatory, and metabolic diseases. As the field develops, a new perspective is emerging. The effects of diet may depend on the microbiota composition of the intestine. A diet that is rich in choline, red meat, dairy, or egg may promote the growth, or change the composition, of microbial species. 
  • 808
  • 11 Nov 2021
Topic Review
Clonal Hematopoiesis in Liquid Biopsy
       Clonal hematopoiesis (CH), a process that involves the accumulation of somatic mutations in hematopoietic stem cells which leads to clonal expansion of mutations in blood cells, may account for the non-tumor derived mutations detected from plasma. These CH mutations may act as a biological noise to cfDNA analysis and complicate the interpretation of mutations detected from liquid biopsy.
  • 808
  • 26 Aug 2020
Topic Review
Intercellular Communication with Endothelial cells
As a cellular interface between the blood and tissues, the endothelial cell (EC) monolayer is involved in the control of key functions including vascular tone, permeability and homeostasis, leucocyte trafficking and hemostasis. EC regulatory functions require long-distance communications between ECs, circulating hematopoietic cells and other vascular cells for efficient adjusting thrombosis, angiogenesis, inflammation, infection and immunity. This intercellular crosstalk operates through the extracellular space and is orchestrated in part by the secretory pathway and the exocytosis of Weibel Palade Bodies (WPBs), secretory granules and extracellular vesicles (EVs).
  • 808
  • 20 Aug 2021
Topic Review
Off-the-Shelf Implants vs. Patient-Specific Implants
Conventional, off-the-shelf (OTS) implants were developed on the basis of anthropometric measurements of a defined standard population. Although different models and sizes of OTS implants exist, it can be challenging to find the best fitting implant design and size for the individual patient’s knee morphology. In addition, the choice of implant is also limited by the surgeon’s preferences and experience with different models or the availability in a particular hospital.
  • 808
  • 14 Jul 2021
  • Page
  • of
  • 1353
ScholarVision Creations