Submitted Successfully!
To reward your contribution, here is a gift for you: A free trial for our video production service.
Thank you for your contribution! You can also upload a video entry or images related to this topic.
Version Summary Created by Modification Content Size Created at Operation
1 + 6005 word(s) 6005 2021-02-07 04:46:59 |
2 format correct -4068 word(s) 1937 2021-02-18 09:46:49 | |
3 format correct -4068 word(s) 1937 2021-02-18 09:48:12 |

Video Upload Options

Do you have a full video?

Confirm

Are you sure to Delete?
Cite
If you have any further questions, please contact Encyclopedia Editorial Office.
Jessberger, N. Toxin Genes of Bacillus cereus. Encyclopedia. Available online: https://encyclopedia.pub/entry/7207 (accessed on 18 April 2024).
Jessberger N. Toxin Genes of Bacillus cereus. Encyclopedia. Available at: https://encyclopedia.pub/entry/7207. Accessed April 18, 2024.
Jessberger, Nadja. "Toxin Genes of Bacillus cereus" Encyclopedia, https://encyclopedia.pub/entry/7207 (accessed April 18, 2024).
Jessberger, N. (2021, February 11). Toxin Genes of Bacillus cereus. In Encyclopedia. https://encyclopedia.pub/entry/7207
Jessberger, Nadja. "Toxin Genes of Bacillus cereus." Encyclopedia. Web. 11 February, 2021.
Toxin Genes of Bacillus cereus
Edit

Bacillus cereus is a ubiquitous soil bacterium responsible for two types of food-associated gastrointestinal diseases. While the emetic syndrome is caused by the cyclic depsipeptide cereulide, proteinaceous enterotoxins provoke the diarrheal disease. Here, an overview on the distribution of the main toxin genes/operons ces (encoding cereulide), hbl (encoding the tripartite hemolysin BL), nhe (encoding the tripartite non-hemolytic enterotoxin), and cytK (encoding the single protein cytotoxin K) within the B. cereus group is given.

Bacillus cereus hemolysin BL non-hemolytic enterotoxin cytotoxin K cereulide pore formation cytotoxicity food poisoning

1. Introduction

Bacillus cereus is estimated to be responsible for 1.4%–12% of all food poisoning outbreaks worldwide[1]. In the European Union, bacterial toxins (ClostridiumStaphylococcus and B. cereus) accounted for 17.7% (2016) and 15.9% (2017) of all registered food- and water-borne outbreaks, which ranked them second behind Salmonella[2][3]. With 98 registered outbreaks in the EU in 2018, B. cereus toxins ranked in fifth place behind SalmonellaCampylobacter, the norovirus and Staphylococcus toxins. Among these was also one large food poisoning outbreak with more than 100 affected persons. Furthermore, six fatal cases were attributed to bacterial toxins (Clostridium botulinumClostridium perfringens and B. cereus) [4].

Basically, B. cereus is responsible for two types of gastrointestinal diseases. The emetic kind of illness is mainly characterized by nausea and emesis, which appear as soon as half an hour after consumption of the contaminated food and are clinically indistinguishable from intoxications with Staphylococcus aureus enterotoxins[5]. In this classical food intoxication, the emetic toxin cereulide is pre-formed during vegetative growth of B. cereus in foodstuffs and the consumption of the bacteria is not necessary [6]. Indeed, there are several reports of outbreaks where only the cereulide toxin was detected in the food, but no bacteria could be isolated[7]. Nevertheless, it is generally thought that at least 103–105 B. cereus per g food are needed to produce cereulide in disease-provoking concentrations [5][6][7][8][9]. Cereulide is a cyclic dodecadepsipeptide with a molecular weight of 1.2 kDa. The basic repeated amino acid sequence [D-O-Leu D-Ala L-O-Val D-Val]3 is extremely stable towards heat, acid or digestive enzymes and, thus, the toxin can hardly be removed or inactivated[10][11][12]. Usually, the emetic form of disease is self-limiting and symptoms disappear after 6–24 h. Nevertheless, some severe and fatal outbreaks mostly related to liver failure are reported [10][13][14][15][16][17][18][19][20][21][22][23]. Due to the ubiquitous nature of the pathogen and its production of highly resistant spores, B. cereus is frequently found in various kinds of food[24][25][26]. Historically, starchy foodstuffs such as rice or pasta are connected to food intoxications with emetic B. cereus, but more recently evidence is growing that emetic B. cereus are much more volatile than once thought. The comprehensive analysis of a total of 3654 food samples obtained from suspected food-borne illnesses with a preliminary report of vomiting, collected over a period of seven years, revealed that emetic B. cereus strains were detected in a broad diversity of foods, including vegetables, fruit products, sauces, soups, and salads as well as milk and meat products[7].

The second, diarrheal form of food poisoning is also associated with a variety of different foodstuffs[27]. This form of disease manifests mainly in diarrhea and abdominal cramps, similar to food poisoning by Clostridium perfringens type A[5]. Symptoms occur after approximately 8–16 h. This incubation time is typical for toxico-infections, in which the toxins are produced by viable bacteria inside the human intestine[5][28][29]. Unlike cereulide, enterotoxins pre-formed in foods most likely do not contribute to the disease, as they are considered sensitive towards heat, acids or proteases. Thus, vegetative B. cereus and, especially, spores must be consumed. The infective dose is estimated between 105–108 cfu/g[11][30] or 104–109 cfu/g[9][29] vegetative cells or spores. The course of disease is mainly mild and—after approximately 12–24 h—self-limiting. Fatal outbreaks are only very rarely reported[31]. A food infection with enteropathogenic B. cereus can be seen as a multifactorial process, as a number of individual steps have to be considered before the onset of the disease, including prevalence and survival of B. cereus in different foodstuffs, survival of the stomach passage, germination of spores, active movement towards and adhesion to the intestinal epithelium, enterotoxin production under intestinal conditions, as well as the influence of consumed foods and the intestinal microbiota on these processes. 

2. Distribution of Toxin Genes

2.1. Prevalence among Isolates from Environment, Foods and Outbreaks

B. cereus is a ubiquitous soil bacterium and can thus be found worldwide in the ground, in dust, or on different foods. Early studies pointed to an occurrence of diarrheal or emetic outbreaks according to country-specific dietary habits, with the emetic form manifesting in Great Britain or Japan, and the diarrheal form rather in Northern Europe or the USA[32][33]. Lately, both syndromes have been reported from all over the world. Basically, emetic strains are found less frequently in foods as well as in the environment than enteropathogenic strains[27][34][35]. In a multitude of studies, new isolates were screened for the presence of the toxin genes nhe (ABC)hbl (CDAB)cytK (1,2)entFM, and ces. In some studies, the presence of bceT (enterotoxin T) was also assessed; however, its enterotoxic capacity is disproven[36][37][38]. Virulence/enterotoxin gene patterns are compiled for B. cereus which has been mainly isolated from foods, but also from clinical, soil and environmental samples worldwide. Generally, those patterns are highly diverse[39][40][41][42][43][44][45].

Common distribution of the toxin genes is approximately 85%–100% nhe (ABC), approximately 40%–70% hbl (CDA), approximately 40%–70% cytK-2, very few ces+, typically no cytK-1+, and—if tested—approximately 60%–100% entFM, which has been detected in studies from Europe [42][46][47][48][49][50][51][52]], South America[53][54], North America[39][55], Asia[56][57][58][59][60][61][62][63]and Africa[64][65][66]. Nevertheless, in some studies, a connection was established between toxin gene patterns and geographical location of the isolates. Drewnowska et al. found that strains possessing nheAhblA and cytK-2 were predominant in regions with arid hot climate, and were comparably rare in continental cold climates[67]. This is supported by other studies suggesting that geographic origin might have an impact on the conservation of hblA among B. cereus populations[68][69][70]. Zhang et al. also claim a “regional feature for toxin gene distribution”[71].

Besides geographical location, toxin gene patterns seem to be also influenced by the kind of foodstuffs analyzed. For instance, Berthold-Pluta et al. found higher prevalence of nhe+ and hbl+, but lower prevalence of ces+ strains in food products of animal than of plant origin[72]. Rossi et al. showed that strains from dairy products had significantly lower cytK-2 and hblCDA prevalence than strains from equipment or raw milk[73], and Hwang and Park found hbl in >95% of tested ready-to-eat (RTE) foods, but only in 30% of infant formulas. Furthermore, the prevalence of cytK-2 was comparably low in the latter food[74].

Studies were also conducted comparing food related and food poisoning related strains. Santos et al. showed that food poisoning strains had a higher occurrence and higher genetic diversity of plcR-papRnheAcytK-2plcA, and gyrB genes than strains isolated from soil or foods[75]CytK and the combination hbl-nhe-cytK were more often found among food poisoning related than among food related strains[49][50][76]

Generally, all B. cereus isolates can be categorized into seven different toxin profiles: A (nhe+, hbl+, cytK+), B (nhe+, cytK+, ces+), C (nhe+, hbl+), D (nhe+, cytK+), E (nhe+, ces+), F (nhe+), and G (cytK+)[46]. In fact, the hbl genes alone or a combination of ces and hbl have only been reported for the very few emetic Bacillus weihenstephanensis isolates described so far[77]. There are further studies showing “unusual” results, particularly low or no prevalence of nhe[43][72][78][79][80][81][82] or extraordinarily high prevalence of hbl[74][83][84][85][86] or ces[87], which must be interpreted cautiously, especially as nhe is well known for its molecular heterogeneity[46][49][50]. Thus, the choice of detection methods, especially primer pairs for nhe, can have a crucial influence on the results.

However, it has to be mentioned that the presence of enterotoxin genes or a certain toxin gene profile does not necessarily allow conclusions on the toxic activity of a B. cereus isolate[51][88]. In our own studies, we chose pairs of strains with an identical toxin gene profile, but one strain exhibited high and the other low toxic activity both under routine laboratory and simulated intestinal growth conditions[89][90]. The reasons for this are so far not completely understood, but it is believed that highly variable and strain-specific mechanisms in toxin gene transcription, posttranscriptional and posttranslational modification and protein secretion are involved.

2.2. Presence within the B. cereus Group

In many of the studies mentioned in Section 2.1, often only B. cereus sensu lato (s. l.) strains are investigated, meaning there is no differentiation between the members of the B. cereus group. In routine microbiological diagnostics, only “presumptive” B. cereus are detected on selective culture media according to international standards (ISO 7932:2005-03)[91][92]. The B. cereus group comprises at least eight species: B. anthracisB. cereus sensu stricto (s. s.)B. thuringiensisB. mycoidesB. pseudomycoidesB. weihenstephanensisB. cytotoxicus and B. toyonensis[93][94][95][96]. Additionally, more and more species such as B. wiedmanniiB. bingmayongensisB. gaemokensisB. manliponensis, and others are described[97][98][99][100][101]. Generally, they exhibit high genetic similarities and, thus, it has been suggested that they be considered as one species[5][102][103] or to completely change the taxonomic nomenclature of the B. cereus group[104]. Species definition is historically based on phenotypes or clinical and economical relevance. While the unique characteristics of B. anthracis, emetic B. cereus and B. thuringiensis are located on plasmids[103], the enterotoxins are chromosome-coded and can thus be present throughout the B. cereus group. This is particularly problematic for the assessment of B. thuringiensis, which is frequently used as biopesticide worldwide[105][106][107]B. thuringiensis has been isolated from a variety of foodstuffs and the presence of the enterotoxin genes nhehbl and cytK-2 has been shown, with similar percentages as for B. cereus[55][58][70][88][108][109][110][111][112][113][114][115][116][117][118][119][120][121][122][123], while ces genes have not been found[124][125]. Enterotoxin production and cytotoxic activity have also been shown [55][111][113][114][115][121][126][127][128][129], and B. thuringiensis could therefore be involved in food poisoning outbreaks[130]. Consequently, it was debated whether the B. thuringiensis-associated biopesticides represent a risk for public health. To clarify this question, there is a demand for simple methods enabling a clear discrimination between B. cereus and B. thuringiensis in routine food and clinical diagnostics as well as for unequivocal identification of the strains used as biopesticides[124].

Next to B. cereus and B. thuringiensis, further species of the B. cereus group were isolated from foods and the presence of enterotoxin genes was proven, such as B. anthracis[46]B. mycoides[40][41][46][68][69][131][132]B. pseudomycoides[40][69]B. toyonensis [135], and B. weihenstephanensis [40][46][69][133][134]. It has also been shown that Bacillus spp. outside the B. cereus group can harbor one or more enterotoxin genes [135][136]. For instance, Mäntynen and Lindström found hblAB. pasteurii DSM 33, B. smithii DSM 459, and Bacillus sp. DSM 466 [68]Nhe and/or hbl genes were also detected in B. amyloliquefaciensB. circulansB. lentimorbis, and B. pasteurii [137]. On the other hand, From et al. found no enterotoxin genes outside the B. cereus group in the strains analyzed [138].

According to MLST (multi-locus sequence typing), AFLP (amplified fragment length polymorphism) and whole genome sequencing, the B. cereus group was first assigned to three phylogenetic groups (clades)[139], then seven (panC types)[94], and later nine[118], which do not correlate with species definition[103]. Prevalence of enterotoxin genes and their profiles were also compared to phylogenetic groups. B. cereus isolates from dairy products in Brazil with approximately 50% cytK-2 and hbl, and approximately 85% nhe were mostly assigned to phylogenetic group III. Group IV and V showed significantly higher prevalence of hblCDA and group IV showed additionally higher prevalence of cytK-2 [73][94]. In another study on dairy isolates, strains of clade IIIc had no hblCDA operon, while strains of clade IV carried it and produced the Hbl toxin, whereas strains of clade VI carried the gene but did not produce the toxin [118]. Furthermore, a broad distribution of enterotoxin genes among seven phylogenetic clades, in which dairy-associated isolates were divided, was shown [88]. Okutani et al. investigated the genomes of 44 B. cereus group isolates from soil, animal and food poisoning cases in Japan. Strains were assigned to four different panC types and five different clades. The nhe operon was found in all strains tested, while ces was detected only in the food poisoning strains. When the presence or absence of virulence-associated genes was statistically analyzed, the majority of soil and animal isolates was part of overlapping clusters, while three of the four food poisoning isolates formed a distinct cluster [140]. Furthermore, the hbl and the ces genes were significantly correlated with the phylogenetic group[140][141]. Several further studies suggested that the toxic potential of B. cereus s. l. strains depends rather on the phylogenetic group than on the species[94][118][142].

References

  1. Grutsch, A.A.; Nimmer, P.S.; Pittsley, R.H.; Kornilow, K.G.; McKillip, J.L. Molecular pathogenesis of Bacillus spp., with emphasis on the dairy industry. Fine Focus 2018, 4, 203–222.
  2. European Food Safety Authority; European Centre for Disease Prevention and Control. The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2016. EFSA J. 2017, 15, e05077.
  3. European Food Safety Authority; European Centre for Disease Prevention and Control. The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2017. EFSA J. 2018, 16, e05500.
  4. European Food Safety Authority; European Centre for Disease Prevention and Control. The European Union one health 2018 zoonoses report. EFSA J. 2019, 17, e05926.
  5. Stenfors Arnesen, L.P.; Fagerlund, A.; Granum, P.E. From soil to gut: Bacillus cereus and its food poisoning toxins. FEMS Microbiol. Rev. 2008, 32, 579–606.
  6. Agata, N.; Ohta, M.; Mori, M.; Isobe, M. A novel dodecadepsipeptide, cereulide, is an emetic toxin of Bacillus cereus. FEMS Microbiol. Lett. 1995, 129, 17–19.
  7. Messelhäusser, U.; Frenzel, E.; Blöchinger, C.; Zucker, R.; Kämpf, P.; Ehling-Schulz, M. Emetic Bacillus cereus are more volatile than thought: Recent foodborne outbreaks and prevalence studies in bavaria (2007–2013). BioMed Res. Int. 2014, 2014, 1–9.
  8. Shinagawa, K.; Ueno, Y.; Hu, D.; Ueda, S.; Sugii, S. Mouse lethal activity of a HEp-2 vacuolation factor, cereulide, produced by Bacillus cereus isolated from vomiting-type food poisoning. J. Vet. Med. Sci. 1996, 58, 1027–1029.
  9. Ehling-Schulz, M.; Messelhäusser, U. One pathogen but two different types of foodborne outbreaks: Bacillus cereus in catering facilities in Germany. In Case Studies in Food Safety and Quality Management: Lessons from Real-Life Situations; Horfaar, J., Ed.; Woodhead: Cambridge, UK, 2012; pp. 63–70.
  10. Ehling-Schulz, M.; Fricker, M.; Scherer, S. Bacillus cereus, the causative agent of an emetic type of food-borne illness. Mol. Nutr. Food Res. 2004, 48, 479–487.
  11. Granum, P.E.; Lund, T. Bacillus cereus and its food poisoning toxins. FEMS Microbiol. Lett. 2006, 157, 223–228.
  12. Rajkovic, A.; Uyttendaele, M.; Vermeulen, A.; Andjelkovic, M.; Fitz-James, I.; in`t Veld, P.; Denon, Q.; Vérhe, R.; Debevere, J. Heat resistance of Bacillus cereus emetic toxin, cereulide. Lett. Appl. Microbiol. 2008, 46, 536–541.
  13. Dichtl, K.; Koeppel, M.B.; Wallner, C.-P.; Marx, T.; Wagener, J.; Ney, L. Food poisoning: An underestimated cause of Boerhaave syndrome. Infection 2019, 48, 125–128.
  14. Dierick, K.; Van Coillie, E.; Swiecicka, I.; Meyfroidt, G.; Devlieger, H.; Meulemans, A.; Hoedemaekers, G.; Fourie, L.; Heyndrickx, M.; Mahillon, J. Fatal family outbreak of Bacillus cereus—associated food poisoning. J. Clin. Microbiol. 2005, 43, 4277–4279.
  15. Ichikawa, K.; Gakumazawa, M.; Inaba, A.; Shiga, K.; Takeshita, S.; Mori, M.; Kikuchi, N. Acute encephalopathy of Bacillus cereus mimicking Reye syndrome. Brain Dev. 2010, 32, 688–690.
  16. Latsios, G.; Petrogiannopoulos, C.; Hartzoulakis, G.; Kondili, L.; Bethimouti, K.; Zaharof, A. Liver abscess due to Bacillus cereus: A case report. Clin. Microbiol. Infect. 2003, 9, 1234–1237.
  17. Ahler, H.E.M.; Asi, A.U.P.; Kramer, J.M.; Schulte, P.; Scoging, A.C.; Är, W.A.B.; Rähenbühl, S.T.K. Fulminant liver failure in association with the emetic toxin of Bacillus cereus. N. Engl. J. Med. 1997, 336, 1142–1148.
  18. Naranjo, M.; Denayer, S.; Botteldoorn, N.; Delbrassinne, L.; Veys, J.; Waegenaere, J.; Sirtaine, N.; Driesen, R.B.; Sipido, K.R.; Mahillon, J.; et al. Sudden death of a young adult associated with Bacillus cereus food poisoning. J. Clin. Microbiol. 2011, 49, 4379–4381.
  19. Posfay-Barbe, K.M.; Schrenzel, J.; Frey, J.; Studer, R.; Korff, C.; Belli, D.C.; Parvex, P.; Rimensberger, P.C.; Schäppi, M.G. Food poisoning as a cause of acute liver failure. Pediatr. Infect. Dis. J. 2008, 27, 846–847.
  20. Saleh, M.; Al Nakib, M.; Doloy, A.; Jacqmin, S.; Ghiglione, S.; Verroust, N.; Poyart, C.; Ozier, Y. Bacillus cereus, an unusual cause of fulminant liver failure: Diagnosis may prevent liver transplantation. J. Med Microbiol. 2012, 61, 743–745.
  21. Shiota, M.; Saitou, K.; Mizumoto, H.; Matsusaka, M.; Agata, N.; Nakayama, M.; Kage, M.; Tatsumi, S.; Okamoto, A.; Yamaguchi, S.; et al. Rapid Detoxification of cereulide in Bacillus cereus food poisoning. Pediatrics 2010, 125, e951–e955.
  22. Takabe, F.; Oya, M. An autopsy case of food poisoning associated with Bacillus cereus. Forensic Sci. 1976, 7, 97–101.
  23. Tschiedel, E.; Rath, P.-M.; Steinmann, J.; Becker, H.; Dietrich, R.; Paul, A.; Felderhoff-Müser, U.; Dohna-Schwake, C. Lifesaving liver transplantation for multi-organ failure caused by Bacillus cereus food poisoning. Pediatr. Transplant. 2014, 19, E11–E14.
  24. Carlin, F. Origin of bacterial spores contaminating foods. Food Microbiol. 2011, 28, 177–182.
  25. Jensen, G.B.; Hansen, B.M.; Eilenberg, J.; Mahillon, J. The hidden lifestyles of Bacillus cereus and relatives. Environ. Microbiol. 2003, 5, 631–640.
  26. Setlow, P. Spore resistance properties. Microbiol. Spectr. 2014, 2, 201–215.
  27. Jessberger, N.; Dietrich, R.; Granum, P.E.; Märtlbauer, E. The Bacillus cereus food infection as multifactorial process. Toxins 2020, 12, 701.
  28. Clavel, T.; Carlin, F.; Lairon, D.; Nguyen-The, C.; Schmitt, P. Survival of Bacillus cereus spores and vegetative cells in acid media simulating human stomach. J. Appl. Microbiol. 2004, 97, 214–219.
  29. Logan, N. Bacillus and relatives in foodborne illness. J. Appl. Microbiol. 2011, 112, 417–429.
  30. European Food Safety Authority. Opinion of the Scientific Panel on biological hazards (BIOHAZ) on Bacillus cereus and other Bacillus spp in foodstuffs. EFSA J. 2005, 3, 1–48.
  31. Lund, T.; De Buyser, M.-L.; Granum, P.E. A new cytotoxin from Bacillus cereus that may cause necrotic enteritis. Mol. Microbiol. 2000, 38, 254–261.
  32. Kotiranta, A.; Lounatmaa, K.; Haapasalo, M. Epidemiology and pathogenesis of Bacillus cereus infections. Microbes Infect. 2000, 2, 189–198.
  33. Kramer, J.M.; Gilbert, R.J. Bacillus cereus and other Bacillus species. In Foodborne Bacterial Pathogens; Doyle, M.P., Ed.; Marcel Dekker, Inc.: New York, NY, USA, 1989; pp. 21–50.
  34. Bağcioğlu, M.; Fricker, M.; Johler, S.; Ehling-Schulz, M. Detection and identification of Bacillus cereus, Bacillus cytotoxicus, Bacillus thuringiensis, Bacillus mycoides and Bacillus weihenstephanensis via machine learning based FTIR spectroscopy. Front. Microbiol. 2019, 10, 902.
  35. Ehling-Schulz, M.; Frenzel, E.; Gohar, M. Food–bacteria interplay: Pathometabolism of emetic Bacillus cereus. Front. Microbiol. 2015, 6, 704.
  36. Agata, N.; Ohta, M.; Arakawa, Y.; Mori, M. The bceT gene of Bacillus cereus encodes an enterotoxic protein. Microbiology 1995, 141, 983–988.
  37. Choma, C.; Granum, P.E. The enterotoxin T (BcET) from Bacillus cereus can probably not contribute to food poisoning. FEMS Microbiol. Lett. 2002, 217, 115–119.
  38. Hansen, B.M.; Hoiby, P.E.; Jensen, G.B.; Hendriksen, N.B.; Høiby, P.E. The Bacillus cereus bceT enterotoxin sequence reappraised. FEMS Microbiol. Lett. 2003, 223, 21–24.
  39. Carter, L.; Chase, H.R.; Gieseker, C.M.; Hasbrouck, N.R.; Stine, C.B.; Khan, A.; Ewing-Peeples, L.J.; Tall, B.D.; Gopinath, G.R. Analysis of enterotoxigenic Bacillus cereus strains from dried foods using whole genome sequencing, multi-locus sequence analysis and toxin gene prevalence and distribution using endpoint PCR analysis. Int. J. Food Microbiol. 2018, 284, 31–39.
  40. Dréan, P.; McAuley, C.M.; Moore, S.C.; Fegan, N.; Fox, E.M. Characterization of the spore-forming Bacillus cereus sensu lato group and Clostridium perfringens bacteria isolated from the Australian dairy farm environment. BMC Microbiol. 2015, 15, 38.
  41. Hsieh, Y.M.; Sheu, S.J.; Chen, Y.L.; Tsen, H.Y. Enterotoxigenic profiles and polymerase chain reaction detection of Bacillus cereus group cells and B. cereus strains from foods and food-borne outbreaks. J. Appl. Microbiol. 1999, 87, 481–490.
  42. Kindle, P.; Etter, D.; Stephan, R.; Johler, S. Population structure and toxin gene profiles of Bacillus cereus sensu lato isolated from flour products. FEMS Microbiol. Lett. 2019, 366.
  43. Saleh-Lakha, S.; Leon-Velarde, C.G.; Chen, S.; Lee, S.; Shannon, K.; Fabri, M.; Downing, G.; Keown, B. A study to assess the numbers and prevalence of Bacillus cereus and its toxins in pasteurized fluid milk. J. Food Prot. 2017, 80, 1085–1089.
  44. Samapundo, S.; Heyndrickx, M.; Xhaferi, R.; Devlieghere, F. Incidence, diversity and toxin gene characteristics of Bacillus cereus group strains isolated from food products marketed in Belgium. Int. J. Food Microbiol. 2011, 150, 34–41.
  45. Chica, J.S.; Correa, M.M.; Aceves-Diez, A.E.; Rasschaert, G.; Heyndrickx, M.; Castañeda-Sandoval, L.M. Genomic and toxigenic heterogeneity of Bacillus cereus sensu lato isolated from ready-to-eat foods and powdered milk in day care centers in Colombia. Foodborne Pathog. Dis. 2020, 17, 340–347.
  46. Ehling-Schulz, M.; Guinebretière, M.-H.; Monthán, A.; Berge, O.; Fricker, M.; Svensson, B. Toxin gene profiling of enterotoxic and emetic Bacillus cereus. FEMS Microbiol. Lett. 2006, 260, 232–240.
  47. Fiedler, G.; Schneider, C.; Igbinosa, E.O.; Kabisch, J.; Brinks, E.; Becker, B.; Stoll, D.A.; Cho, G.-S.; Huch, M.; Franz, C.M.A.P. Antibiotics resistance and toxin profiles of Bacillus cereus-group isolates from fresh vegetables from German retail markets. BMC Microbiol. 2019, 19, 250.
  48. Svensson, B.; Ekelund, K.; Ogura, H.; Christiansson, A. Characterisation of Bacillus cereus isolated from milk silo tanks at eight different dairy plants. Int. Dairy J. 2004, 14, 17–27.
  49. Ehling-Schulz, M.; Svensson, B.; Guinebretière, M.-H.; Lindbäck, T.; Andersson, M.; Schulz, A.; Fricker, M.; Christiansson, A.; Granum, P.E.; Märtlbauer, E.; et al. Emetic toxin formation of Bacillus cereus is restricted to a single evolutionary lineage of closely related strains. Microbiology 2005, 151, 183–197.
  50. Guinebretière, M.-H.; Broussolle, V.; Nguyen-The, C. Enterotoxigenic profiles of food-poisoning and food-borne Bacillus cereus strains. J. Clin. Microbiol. 2002, 40, 3053–3056.
  51. Moravek, M.; Dietrich, R.; Buerk, C.; Broussolle, V.; Guinebretière, M.-H.; Granum, P.E.; Nguyen-The, C.; Märtlbauer, E. Determination of the toxic potential of Bacillus cereus isolates by quantitative enterotoxin analyses. FEMS Microbiol. Lett. 2006, 257, 293–298.
  52. Böhm, M.-E.; Huptas, C.; Krey, V.M.; Scherer, S. Massive horizontal gene transfer, strictly vertical inheritance and ancient duplications differentially shape the evolution of Bacillus cereus enterotoxin operons hbl, cytK and nhe. BMC Evol. Biol. 2015, 15, 246.
  53. Chaves, J.Q.; Pires, E.S.; Vivoni, A.M. Genetic diversity, antimicrobial resistance and toxigenic profiles of Bacillus cereus isolated from food in Brazil over three decades. Int. J. Food Microbiol. 2011, 147, 12–16.
  54. Aragon-Alegro, L.C.; Palcich, G.; Lopes, G.V.; Ribeiro, V.B.; Landgraf, M.; Destro, M.T. Enterotoxigenic and genetic profiles of Bacillus cereus strains of food origin in Brazil. J. Food Prot. 2008, 71, 2115–2118.
  55. Ankolekar, C.; Rahmati, T.; Labbé, R.G. Detection of toxigenic Bacillus cereus and Bacillus thuringiensis spores in U.S. rice. Int. J. Food Microbiol. 2009, 128, 460–466.
  56. Batchoun, R.; Al-Sha’Er, A.I.; Khabour, O.F. Molecular characterization of Bacillus cereus toxigenic strains isolated from different food matrices in Jordan. Foodborne Pathog. Dis. 2011, 8, 1153–1158.
  57. Cui, Y.; Liu, X.; Dietrich, R.; Märtlbauer, E.; Cao, J.; Ding, S.; Zhu, K. Characterization of Bacillus cereus isolates from local dairy farms in China. FEMS Microbiol. Lett. 2016, 363.
  58. Forghani, F.; Kim, J.-B.; Oh, D.-H. Enterotoxigenic profiling of emetic toxin- and enterotoxin-producing Bacillus cereus, isolated from food, environmental, and clinical samples by multiplex PCR. J. Food Sci. 2014, 79, M2288–M2293.
  59. Gao, T.; Ding, Y.; Wu, Q.; Wang, J.; Zhang, J.; Yu, S.; Yu, P.; Liu, C.; Kong, L.; Feng, Z.; et al. Prevalence, virulence genes, antimicrobial susceptibility, and genetic diversity of Bacillus cereus isolated from pasteurized milk in China. Front. Microbiol. 2018, 9, 533.
  60. Park, K.M.; Jeong, M.; Park, K.J.; Koo, M. Prevalence, enterotoxin genes, and antibiotic resistance of Bacillus cereus isolated from raw vegetables in Korea. J. Food Prot. 2018, 81, 1590–1597.
  61. Rana, N.; Panda, A.K.; Pathak, N.; Gupta, T.; Thakur, S.D. Bacillus cereus: Public health burden associated with ready-to-eat foods in Himachal Pradesh, India. J. Food Sci. Technol. 2020, 57, 2293–2302.
  62. Thaenthanee, S.; Wong, A.; Panbangred, W. Phenotypic and genotypic comparisons reveal a broad distribution and heterogeneity of hemolysin BL genes among Bacillus cereus isolates. Int. J. Food Microbiol. 2005, 105, 203–212.
  63. Yim, J.-H.; Kim, K.-Y.; Chon, J.-W.; Kim, D.-H.; Kim, H.-S.; Choi, D.-S.; Choi, I.-S.; Seo, K.-H. Incidence, antibiotic susceptibility, and toxin profiles of Bacillus cereus sensu lato isolated from Korean fermented soybean products. J. Food Sci. 2015, 80, M1266–M1270.
  64. Ouoba, L.; Thorsen, L.; Varnam, A.H. Enterotoxins and emetic toxins production by Bacillus cereus and other species of Bacillus isolated from Soumbala and Bikalga, African alkaline fermented food condiments. Int. J. Food Microbiol. 2008, 124, 224–230.
  65. Owusu-Kwarteng, J.; Wuni, A.; Akabanda, F.; Debrah, K.T.; Jespersen, L. Prevalence, virulence factor genes and antibiotic resistance of Bacillus cereus sensu lato isolated from dairy farms and traditional dairy products. BMC Microbiol. 2017, 17, 65.
  66. Amor, M.G.-B.; Jan, S.; Baron, F.; Grosset, N.; Culot, A.; Gdoura, R.; Gautier, M.; Techer, C. Toxigenic potential and antimicrobial susceptibility of Bacillus cereus group bacteria isolated from Tunisian foodstuffs. BMC Microbiol. 2019, 19, 196.
  67. Drewnowska, J.M.; Stefanska, N.; Czerniecka, M.; Zambrowski, G.; Swiecicka, I. Potential Enterotoxicity of phylogenetically diverse Bacillus cereus sensu lato soil isolates from different geographical locations. Appl. Environ. Microbiol. 2020, 86, 86.
  68. Mäntynen, V.; Lindström, K. A rapid PCR-based DNA test for enterotoxic Bacillus cereus. Appl. Environ. Microbiol. 1998, 64, 1634–1639.
  69. Prüß, B.M.; Dietrich, R.; Nibler, B.; Märtlbauer, E.; Scherer, S. The hemolytic enterotoxin HBL is broadly distributed among species of the Bacillus cereus group. Appl. Environ. Microbiol. 1999, 65, 5436–5442.
  70. Zahner, V.; Cabral, D.A.; Régua-Mangia, A.H.; Rabinovitch, L.; Moreau, G.; McIntosh, D. Distribution of genes encoding putative virulence factors and fragment length polymorphisms in the vrra gene among brazilian isolates of Bacillus cereus and Bacillus thuringiensis. Appl. Environ. Microbiol. 2005, 71, 8107–8114.
  71. Zhang, Z.; Feng, L.; Xu, H.; Liu, C.; Shah, N.P.; Wei, H. Detection of viable enterotoxin-producing Bacillus cereus and analysis of toxigenicity from ready-to-eat foods and infant formula milk powder by multiplex PCR. J. Dairy Sci. 2016, 99, 1047–1055.
  72. Berthold-Pluta, A.; Pluta, A.; Garbowska, M.; Stefańska, I.; Pluta, B. Prevalence and toxicity characterization of Bacillus cereus in food products from Poland. Foods 2019, 8, 269.
  73. Rossi, G.A.M.; Silva, H.O.; Aguilar, C.E.G.; Rochetti, A.L.; Pascoe, B.; Meric, G.; Mourkas, E.; Hitchings, M.D.; Mathias, L.A.; Ruiz, V.L.D.A.; et al. Comparative genomic survey of Bacillus cereus sensu stricto isolates from the dairy production chain in Brazil. FEMS Microbiol. Lett. 2018, 365.
  74. Hwang, J.-Y.; Park, J.-H. Characteristics of enterotoxin distribution, hemolysis, lecithinase, and starch hydrolysis of Bacillus cereus isolated from infant formulas and ready-to-eat foods. J. Dairy Sci. 2015, 98, 1652–1660.
  75. Santos, C.A.; Almeida, F.; Guimarães, A.G.; Abrahão, W.; Arantes, O.; Vilas-Bôas, G. RE-PCR variability and toxigenic profile of food poisoning, foodborne and soil-associated Bacillus cereus isolates from Brazil. Int. J. Food Microbiol. 2011, 151, 277–283.
  76. Ehling-Schulz, M.; Knutsson, R.; Scherer, S. Bacillus cereus. In Genomes of Food and Water-Borne Pathogens; Kathariou, S., Fratamico, P., Liu, Y., Eds.; ASM Press: Washington, DC, USA, 2011; pp. 147–164.
  77. Thorsen, L.; Hansen, B.M.; Nielsen, K.F.; Hendriksen, N.B.; Phipps, R.K.; Budde, B.B. Characterization of emetic Bacillus weihenstephanensis, a new cereulide-producing bacterium. Appl. Environ. Microbiol. 2006, 72, 5118–5121.
  78. Chaves, J.Q.; Cavados, C.D.F.G.; Vivoni, A.M. Molecular and toxigenic characterization of Bacillus cereus and Bacillus thuringiensis strains isolated from commercial ground roasted coffee. J. Food Prot. 2012, 75, 518–522.
  79. Chon, J.; Kim, J.; Lee, S.; Hyeon, J.; Song, K.; Park, C.; Seo, K.-H. Prevalence, phenotypic traits and molecular characterization of emetic toxin-producing Bacillus cereus strains isolated from human stools in Korea. J. Appl. Microbiol. 2012, 112, 1042–1049.
  80. López, A.C.; Minnaard, J.; Pérez, P.F.; Alippi, A.M. A case of intoxication due to a highly cytotoxic Bacillus cereus strain isolated from cooked chicken. Food Microbiol. 2015, 46, 195–199.
  81. Rahimi, E.; Abdos, F.; Momtaz, H.; Baghbadorani, Z.T.; Jalali, M. Bacillus cereus in infant foods: Prevalence study and distribution of enterotoxigenic virulence factors in isfahan province, Iran. Sci. World J. 2013, 2013, 1–5.
  82. Zeighami, H.; Nejad-Dost, G.; Parsadanians, A.; Daneshamouz, S.; Haghi, F. Frequency of hemolysin BL and non-hemolytic enterotoxin complex genes of Bacillus cereus in raw and cooked meat samples in Zanjan, Iran. Toxicol. Rep. 2020, 7, 89–92.
  83. Chon, J.-W.; Kim, J.-H.; Lee, S.-J.; Hyeon, J.-Y.; Seo, K.-H. Toxin profile, antibiotic resistance, and phenotypic and molecular characterization of Bacillus cereus in Sunsik. Food Microbiol. 2012, 32, 217–222.
  84. Chon, J.-W.; Yim, J.-H.; Kim, H.-S.; Kim, D.-H.; Kim, H.; Oh, D.-H.; Kim, S.-K.; Seo, K.-H. Quantitative prevalence and toxin gene profile of Bacillus cereus from ready-to-eat vegetables in South Korea. Foodborne Pathog. Dis. 2015, 12, 795–799.
  85. Flores-Urbán, K.A.; Natividad-Bonifacio, I.; Vázquez-Quiñones, C.R.; Vázquez-Salinas, C.; Quiñones-Ramírez, E.I. Detection of toxigenic Bacillus cereus strains isolated from vegetables in Mexico city. J. Food Prot. 2014, 77, 2144–2147.
  86. Kim, J.-B.; Kim, J.-M.; Cho, S.-H.; Oh, H.-S.; Choi, N.J.; Oh, D.-H. Toxin genes profiles and toxin production ability of Bacillus cereus isolated from clinical and food samples. J. Food Sci. 2011, 76, T25–T29.
  87. Lee, N.; Sun, J.M.; Kwon, K.Y.; Kim, H.J.; Koo, M.; Chun, H.S. Genetic diversity, antimicrobial resistance, and toxigenic profiles of Bacillus cereus strains isolated from Sunsik. J. Food Prot. 2012, 75, 225–230.
  88. Cheng, R.A.; Jian, J.; Beno, S.M.; Wiedmann, M.; Kovac, J. Intraclade variability in toxin production and cytotoxicity of Bacillus cereus group type strains and dairy-associated isolates. Appl. Environ. Microbiol. 2018, 84, 84.
  89. Jessberger, N.; Krey, V.M.; Rademacher, C.; Böhm, M.-E.; Mohr, A.-K.; Ehling-Schulz, M.; Scherer, S.; Märtlbauer, E. From genome to toxicity: A combinatory approach highlights the complexity of enterotoxin production in Bacillus cereus. Front. Microbiol. 2015, 6, 560.
  90. Jessberger, N.; Rademacher, C.; Krey, V.M.; Dietrich, R.; Mohr, A.-K.; Böhm, M.-E.; Scherer, S.; Ehling-Schulz, M.; Märtlbauer, E. Simulating intestinal growth conditions enhances toxin production of enteropathogenic Bacillus cereus. Front. Microbiol. 2017, 8, 627.
  91. Ehling-Schulz, M.; Messelhäusser, U. Bacillus “next generation” diagnostics: Moving from detection toward subtyping and risk-related strain profiling. Front. Microbiol. 2013, 4, 32.
  92. International Organization for Standardization. ISO 7932:2004 Microbiology of Food and Animal Feeding Stuffs—Horizontal Method for the Enumeration of Presumptive Bacillus cereus—Colony-Count Technique at 30 °C. Available online: http://www.iso.org/iso/catalogue_detail.htm?csnumber=382192004 (accessed on 29 June 2020).
  93. Guinebretière, M.-H.; Auger, S.; Galleron, N.; Contzen, M.; De Sarrau, B.; De Buyser, M.-L.; Lamberet, G.; Fagerlund, A.; Granum, P.E.; Lereclus, D.; et al. Bacillus cytotoxicus sp. nov. is a novel thermotolerant species of the Bacillus cereus group occasionally associated with food poisoning. Int. J. Syst. Evol. Microbiol. 2013, 63, 31–40.
  94. Guinebretière, M.-H.; Thompson, F.L.; Sorokin, A.; Normand, P.; Dawyndt, P.; Ehling-Schulz, M.; Svensson, B.; Sanchis, V.; Nguyen-The, C.; Heyndrickx, M.; et al. Ecological diversification in the Bacillus cereus group. Environ. Microbiol. 2008, 10, 851–865.
  95. Jiménez, G.; Urdiain, M.; Cifuentes, A.; López-López, A.; Blanch, A.R.; Tamames, J.; Kämpfer, P.; Kolstø, A.-B.; Ramón, D.; Martínez, J.F.; et al. Description of Bacillus toyonensis sp. nov., a novel species of the Bacillus cereus group, and pairwise genome comparisons of the species of the group by means of ANI calculations. Syst. Appl. Microbiol. 2013, 36, 383–391.
  96. Liu, Y.; Lai, Q.; Göker, M.; Meier-Kolthoff, J.P.; Wang, M.; Sun, Y.; Wang, L.; Shao, Z. Genomic insights into the taxonomic status of the Bacillus cereus group. Sci. Rep. 2015, 5, srep14082.
  97. Jung, M.Y.; Kim, J.-S.; Paek, W.K.; Lim, J.; Lee, H.; Kim, P.I.; Ma, J.Y.; Kim, W.; Chang, Y.-H. Bacillus manliponensis sp. nov., a new member of the Bacillus cereus group isolated from foreshore tidal flat sediment. J. Microbiol. 2011, 49, 1027–1032.
  98. Jung, M.-Y.; Paek, W.K.; Park, I.-S.; Han, J.-R.; Sin, Y.; Paek, J.; Rhee, M.-S.; Kim, H.; Song, H.S.; Chang, Y.-H. Bacillus gaemokensis sp. nov., isolated from foreshore tidal flat sediment from the Yellow Sea. J. Microbiol. 2010, 48, 867–871.
  99. Liu, B.; Liu, G.-H.; Hu, G.-P.; Cetin, S.; Lin, N.-Q.; Tang, J.-Y.; Tang, W.-Q.; Lin, Y.-Z. Bacillus bingmayongensis sp. nov., isolated from the pit soil of Emperor Qin’s Terra-cotta warriors in China. Antonie van Leeuwenhoek 2014, 105, 501–510.
  100. Liu, Y.; Du, J.; Lai, Q.; Zeng, R.; Ye, D.; Xu, J.; Shao, Z. Proposal of nine novel species of the Bacillus cereus group. Int. J. Syst. Evol. Microbiol. 2017, 67, 2499–2508.
  101. Miller, R.A.; Beno, S.M.; Kent, D.J.; Carroll, L.M.; Martin, N.H.; Boor, K.J.; Kovac, J. Bacillus wiedmannii sp. nov., a psychrotolerant and cytotoxic Bacillus cereus group species isolated from dairy foods and dairy environments. Int. J. Syst. Evol. Microbiol. 2016, 66, 4744–4753.
  102. Okinaka, R.T.; Keim, P.S. The phylogeny of Bacillus cereus sensu lato. Microbiol. Spectr. 2016, 4, 4.
  103. Ehling-Schulz, M.; Lereclus, D.; Koehler, T.M. The Bacillus cereus group: Bacillus species with pathogenic potential. Microbiol. Spectr. 2019, 7, 7.
  104. Carroll, L.M.; Wiedmann, M.; Kovac, J. Proposal of a taxonomic nomenclature for the Bacillus cereus group which reconciles genomic definitions of bacterial species with clinical and industrial phenotypes. mBio 2020, 11, e00034-20.
  105. Chattopadhyay, P.; Banerjee, G. Recent advancement on chemical arsenal of Bt toxin and its application in pest management system in agricultural field. 3 Biotech 2018, 8, 201.
  106. Jouzani, G.S.; Valijanian, E.; Sharafi, R. Bacillus thuringiensis: A successful insecticide with new environmental features and tidings. Appl. Microbiol. Biotechnol. 2017, 101, 2691–2711.
  107. Schnepf, E.; Crickmore, N.; Van Rie, J.; Lereclus, D.; Baum, J.; Feitelson, J.; Zeigler, D.R.; Dean, D.H. Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol. Mol. Biol. Rev. 1998, 62, 775–806.
  108. Celandroni, F.; Salvetti, S.; Senesi, S.; Ghelardi, E. Bacillus thuringiensis membrane-damaging toxins acting on mammalian cells. FEMS Microbiol. Lett. 2014, 361, 95–103.
  109. Cho, S.-H.; Kang, S.-H.; Lee, Y.-E.; Kim, S.-J.; Yoo, Y.-B.; Bak, Y.-S.; Kim, J.-B. Distribution of toxin genes and enterotoxins in Bacillus thuringiensis isolated from microbial insecticide products. J. Microbiol. Biotechnol. 2015, 25, 2043–2048.
  110. Frentzel, H.; Kraushaar, B.; Krause, G.; Bodi, D.; Wichmann-Schauer, H.; Appel, B.; Mader, A. Phylogenetic and toxinogenic characteristics of Bacillus cereus group members isolated from spices and herbs. Food Control 2018, 83, 90–98.
  111. Rivera, A.M.G.; Granum, P.E.; Priest, F.G. Common occurrence of enterotoxin genes and enterotoxicity in Bacillus thuringiensis. FEMS Microbiol. Lett. 2000, 190, 151–155.
  112. Hariram, U.; Labbé, R.G. Spore prevalence and toxigenicity of Bacillus cereus and Bacillus thuringiensis isolates from U.S. retail spices. J. Food Prot. 2015, 78, 590–596.
  113. Hansen, B.M.; Hendriksen, N.B. Detection of enterotoxic Bacillus cereus and Bacillus thuringiensis strains by PCR analysis. Appl. Environ. Microbiol. 2001, 67, 185–189.
  114. Johler, S.; Kalbhenn, E.M.; Heini, N.; Brodmann, P.; Gautsch, S.; Bağcioğlu, M.; Contzen, M.; Stephan, R.; Ehling-Schulz, M. Enterotoxin production of Bacillus thuringiensis isolates from biopesticides, foods, and outbreaks. Front. Microbiol. 2018, 9, 1915.
  115. Kim, B.; Bang, J.; Kim, H.; Kim, Y.; Kim, B.-S.; Beuchat, L.R.; Ryu, J. Bacillus cereus and Bacillus thuringiensis spores in Korean rice: Prevalence and toxin production as affected by production area and degree of milling. Food Microbiol. 2014, 42, 89–94.
  116. Kim, J.-B.; Choi, O.-K.; Kwon, S.-M.; Cho, S.-H.; Park, B.-J.; Jin, N.Y.; Yu, Y.-M.; Oh, D.-H. Prevalence and toxin characteristics of Bacillus thuringiensis isolated from organic vegetables. J. Microbiol. Biotechnol. 2017, 27, 1449–1456.
  117. Kim, M.-J.; Han, J.-K.; Park, J.-S.; Lee, J.-S.; Lee, S.-H.; Cho, J.-I.; Kim, K.-S. Various enterotoxin and other virulence factor genes widespread among Bacillus cereus and Bacillus thuringiensis strains. J. Microbiol. Biotechnol. 2015, 25, 872–879.
  118. Kovac, J.; Cheng, R.A.; Carroll, L.M.; Kent, D.J.; Jian, J.; Beno, S.M.; Wiedmann, M. Production of hemolysin BL by Bacillus cereus group isolates of dairy origin is associated with whole-genome phylogenetic clade. BMC Genom. 2016, 17, 581.
  119. Kyei-Poku, G.; Gauthier, D.; Pang, A.; Van Frankenhuyzen, K. Detection of Bacillus cereus virulence factors in commercial products of Bacillus thuringiensis and expression of diarrheal enterotoxins in a target insect. Can. J. Microbiol. 2007, 53, 1283–1290.
  120. Ngamwongsatit, P.; Buasri, W.; Pianariyanon, P.; Pulsrikarn, C.; Ohba, M.; Assavanig, A.; Panbangred, W. Broad distribution of enterotoxin genes (hblCDA, nheABC, cytK, and entFM) among Bacillus thuringiensis and Bacillus cereus as shown by novel primers. Int. J. Food Microbiol. 2008, 121, 352–356.
  121. Schwenk, V.; Riegg, J.; Lacroix, M.; Märtlbauer, E.; Jessberger, N. Enteropathogenic potential of Bacillus thuringiensis isolates from soil, animals, food and biopesticides. Foods 2020, 9, 1484.
  122. Zhou, G.; Liu, H.; He, J.; Yuan, Y.; Yuan, Z. The occurrence of Bacillus cereus, B. thuringiensis and B. mycoides in Chinese pasteurized full fat milk. Int. J. Food Microbiol. 2008, 121, 195–200.
  123. Swiecicka, I.; Van Der Auwera, G.A.; Mahillon, J. Hemolytic and nonhemolytic enterotoxin genes are broadly distributed among Bacillus thuringiensis isolated from wild mammals. Microb. Ecol. 2006, 52, 544–551.
  124. EFSA Panel on Biological Hazards. Risks for public health related to the presence of Bacillus cereus and other Bacillus spp. including Bacillus thuringiensis in foodstuffs. EFSA J. 2016, 14, 4524.
  125. Hoton, F.M.; Fornelos, N.; N’Guessan, E.; Hu, X.; Swiecicka, I.; Dierick, K.; Jääskeläinen, E.; Salkinoja-Salonen, M.; Mahillon, J. Family portrait of Bacillus cereus and Bacillus weihenstephanensis cereulide-producing strains. Environ. Microbiol. Rep. 2009, 1, 177–183.
  126. Abdel-Hameed, A. Studies on Bacillus thuringiensis strains isolated from Swedish soils: Insect toxicity and production of B. cereus-diarrhoeal-type enterotoxin. World J. Microbiol. Biotechnol. 1994, 10, 406–409.
  127. Damgaard, P.H. Diarrhoeal enterotoxin production by strains of Bacillus thuringiensis isolated from commercial Bacillus thuringiensis-based insecticides. FEMS Immunol. Med Microbiol. 1995, 12, 245–249.
  128. Damgaard, P.; Larsen, H.; Hansen, B.; Bresciani, J.; Jørgensen, K. Enterotoxin-producing strains of Bacillus thuringiensis isolated from food. Lett. Appl. Microbiol. 1996, 23, 146–150.
  129. Yang, C.-Y.; Pang, J.-C.; Kao, S.-S.; Tsen, H.-Y. Enterotoxigenicity and cytotoxicity of Bacillus thuringiensis strains and development of a process for Cry1Ac production. J. Agric. Food Chem. 2003, 51, 100–105.
  130. McIntyre, L.; Bernard, K.; Beniac, D.; Isaac-Renton, J.L.; Naseby, D.C. Identification of Bacillus cereus group species associated with food poisoning outbreaks in British Columbia, Canada. Appl. Environ. Microbiol. 2008, 74, 7451–7453.
  131. Melnick, R.L.; Testen, A.; Poleatewich, A.; Backman, P.; Bailey, B. Detection and expression of enterotoxin genes in endophytic strains of Bacillus cereus. Lett. Appl. Microbiol. 2012, 54, 468–474.
  132. Beattie, S.H.; Williams, A. Detection of toxigenic strains of Bacillus cereus and other Bacillus spp. with an improved cytotoxicity assay. Lett. Appl. Microbiol. 1999, 28, 221–225.
  133. Rejasse, A.; Gilois, N.; Barbosa, I.; Huillet, E.; Bevilacqua, C.; Tran, S.; Ramarao, N.; Stenfors Arnesen, L.P.; Sanchis-Borja, V. Temperature-dependent production of various plcr-controlled virulence factors in Bacillus weihenstephanensis strain KBAB4. Appl. Environ. Microbiol. 2012, 78, 2553–2561.
  134. Stenfors, L.P.; Mayr, R.; Scherer, S.; Granum, P.E. Pathogenic potential of fifty Bacillus weihenstephanensis strains. FEMS Microbiol. Lett. 2002, 215, 47–51.
  135. McKillip, J.L. Prevalence and expression of enterotoxins in Bacillus cereus and other Bacillus spp., a literature review. Antonie van Leeuwenhoek 2000, 77, 393–399.
  136. Özdemir, F.; Arslan, S. Molecular characterization and toxin profiles of Bacillus spp. isolated from retail fish and ground beef. J. Food Sci. 2019, 84, 548–556.
  137. Phelps, R.J.; McKillip, J.L. Enterotoxin production in natural isolates of bacillaceae outside the Bacillus cereus group. Appl. Environ. Microbiol. 2002, 68, 3147–3151.
  138. From, C.; Pukall, R.; Schumann, P.; Hormazábal, V.; Granum, P.E. Toxin-producing ability among Bacillus spp. outside the Bacillus cereus group. Appl. Environ. Microbiol. 2005, 71, 1178–1183.
  139. Didelot, X.; Barker, M.; Falush, D.; Priest, F.G. Evolution of pathogenicity in the Bacillus cereus group. Syst. Appl. Microbiol. 2009, 32, 81–90.
  140. Okutani, A.; Inoue, S.; Noguchi, A.; Kaku, Y.; Morikawa, S. Whole-genome sequence-based comparison and profiling of virulence-associated genes of Bacillus cereus group isolates from diverse sources in Japan. BMC Microbiol. 2019, 19, 296.
  141. Carroll, L.M.; Kovac, J.; Miller, R.A.; Wiedmann, M. Rapid, High-throughput identification of anthrax-causing and emetic Bacillus cereus group genome assemblies via BTyper, a computational tool for virulence-based classification of Bacillus cereus group isolates by using nucleotide sequencing data. Appl. Environ. Microbiol. 2017, 83, e01096-17.
  142. Guinebretière, M.-H.; Velge, P.; Couvert, O.; Carlin, F.; Debuyser, M.-L.; Nguyen-The, C. Ability of Bacillus cereus group strains to cause food poisoning varies according to phylogenetic affiliation (groups I to VII) rather than species affiliation. J. Clin. Microbiol. 2010, 48, 3388–3391.
More
Information
Contributor MDPI registered users' name will be linked to their SciProfiles pages. To register with us, please refer to https://encyclopedia.pub/register :
View Times: 671
Revisions: 3 times (View History)
Update Date: 18 Feb 2021
1000/1000