Topic Review
Gravitational Valves in Hydrocephalus Management
In the past decade, there has been a clear trend towards better outcomes in patients with hydro-cephalus, especially those with normal pressure hydrocephalus (NPH). This is partly due to the availability of more sophisticated hardware and a better understanding of implants. However, there is little evidence to show the superiority of a specific type of valve over another. The most commonly reported consequence of hydrodynamic mismatch is shunt over-drainage. Simple dif-ferential pressure valves, with a fixed opening pressure or even adjustable valves, lead to non-physiologic intraventricular pressure (IVP) as soon as the patient moves into an upright pos-ture. These valves fail to maintain IVP within physiological limits due to the changes in hydro-static pressure in the drainage system. To solve this problem more complex third-generation hy-drostatic valves have been designed. These gravitational devices aim to reduce flow through a shunt system when the patient is upright but there are important technical differences between them.
  • 708
  • 28 Sep 2021
Topic Review
Ehlers–Danlos Syndrome
Ehlers-Danlos syndromes (EDS) are a group of connective tissue disorders which manifest with hyperextensibility of joints and skin, and general tissue fragility. While not a major criterion for clinical diagnosis, pain is a frequently endorsed symptom across subtypes of EDS. Similarly, in painful conditions, quality of life is known to be diminished. As such, EDS and related diagnostic heterogeneity is reviewed, and quality of life correlates of pain in pediatric samples are discussed. 
  • 708
  • 29 Sep 2020
Topic Review
ACSL3 and ACSL4 in Ferroptosis
Ferroptosis involves cell metabolism, regulations of reactive oxygen species (ROS), and iron metabolism. To trigger ferroptosis, specific lipids must undergo peroxidation, and the natural defense mechanisms that prevent the accumulation of peroxidized lipids must be compromised. Acyl CoA synthetase (ACSLs) play an important role in tissue cell metabolism, and different isoforms have different tissue distributions and substrate preferences, which regulate different intracellular lipid compositions. Among these five isoforms, ACSL3 and ACSL4 have been shown to participate in ferroptosis. In addition, ACSL4 is a positive regulator in ferroptosis, whereas ACSL3 contributes to cancer cells acquiring ferroptosis resistance.
  • 708
  • 15 Dec 2022
Topic Review
Mitochondrial Oxidative Stress
Mitochondria are essential semi-autonomous cellular organelles with a double membrane composed by an inner (IMM) and an outer membrane (OMM).
  • 708
  • 18 Mar 2021
Topic Review
Vitamin D for Treatment of Depression and Anxiety
Major depressive disorder and anxiety disorders are common and disabling conditions that affect millions of people worldwide. Despite being different disorders, symptoms of depression and anxiety frequently overlap in individuals, making them difficult to diagnose and treat adequately. Therefore, compounds capable of exerting beneficial effects against both disorders are of special interest. Noteworthily, vitamin D deficiency has been associated with an increased risk of developing depression and anxiety, and individuals with these psychiatric conditions have low serum levels of this vitamin. 
  • 708
  • 12 Jul 2022
Topic Review
Prenatal Care
Care in the preconception stage and during pregnancy are essential for the health of the mother and the baby. Maternal feeding plays a fundamental role as a modulator of the prevention of maternal and fetal pathology.
  • 708
  • 25 Apr 2021
Topic Review
Complement System in Alzheimer’s Disease
Alzheimer’s disease is a type of dementia characterized by problems with short-term memory, cognition, and difficulties with activities of daily living. It is a progressive, neurodegenerative disorder. The complement system is an ancient part of the innate immune system and comprises of more than thirty serum and membrane-bound proteins. This system has three different activating pathways and culminates into the formation of a membrane attack complex that ultimately causes target cell lysis (usually pathogens) The complement system is involved in several important functions in the central nervous system (CNS) that include neurogenesis, synaptic pruning, apoptosis, and neuronal plasticity.
  • 708
  • 30 Dec 2021
Topic Review Peer Reviewed
A Journey to Hear: The Evolution of Cochlear Implants
Cochlear implants (CIs), a revolutionary breakthrough in auditory technology, have profoundly impacted the lives of individuals with severe hearing impairment. Surgically implanted behind the ear and within the delicate cochlea, these devices represent a direct pathway to restoring the sense of hearing. Implanting hope alongside innovation, their captivating history unfolds through pivotal dates and transformative milestones. From the first human implantation by Drs. William House and John Doyle in 1961 to FDA approval in 1984, each step in their evolution mirrors a triumph of human ingenuity. The 1990s witnessed significant miniaturization, enhancing accessibility, while the 21st century brought about improvements in speech processing and electrode technology. These strides have elevated CIs beyond functional devices to life-changing instruments, enriching both auditory experiences and communication skills. This entry delves into the captivating history of CIs, spotlighting key dates that paint a vivid picture of challenges overcome and remarkable progress achieved. It explores the people and moments that defined their development, ultimately shaping these implants into indispensable tools that continually redefine the landscape of hearing assistance.
  • 709
  • 12 Jan 2024
Topic Review
Unconventional Treatment of Biofilm Infection
Today, researchers are looking at new ways to treat severe infections caused by resistance to standard antibiotic therapy. This is quite challenging due to the complex and interdependent relationships involved: the cause of infection–the patient–antimicrobial agents. The sessile biofilm form is essential in research to reduce resistance to very severe infections (such as ESKAPE pathogens: Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumanni, Pseudomonas aeruginosa, and Enterobacter spp). The purpose of this study is to elucidate the mechanisms of the occurrence, maintenance, and suppression of biofilm infections. One form of biofilm suppression is the efficient action of natural antagonists of bacteria—bacteriophages. Bacteriophages effectively penetrate the biofilm’s causative cells. They infect those bacterial cells and either destroy them or prevent the infection from spreading. In this process, bacteriophages are specific, relatively easy to apply, and harmless to the patient. Antimicrobial peptides (AMPs) support the mechanisms of bacteriophages’ action. AMPs could also attack and destroy infectious agents on their own (even on biofilm). AMPs are simple, universal peptide molecules, mainly cationic peptides. Additional AMP research could help develop even more effective treatments of biofilm (bacteriophages, antibiotics, AMPs, nanoparticles). This is a review of recent unconventional agents, such as bacteriophages and AMPs, used for the eradication of biofilm, providing an overview of potentially new biofilm treatment strategies.
  • 707
  • 20 Oct 2020
Topic Review
MDM2-Based Proteolysis-Targeting Chimeras (PROTACs)
Proteolysis-targeting chimeras (PROTACs) are molecules that selectively degrade a protein of interest (POI). The incorporation of ligands that recruit mouse double minute 2 (MDM2) into PROTACs, forming the so-called MDM2-based PROTACs, has shown promise in cancer treatment due to its dual mechanism of action: a PROTAC that recruits MDM2 prevents its binding to p53, resulting not only in the degradation of POI but also in the increase of intracellular levels of the p53 suppressor, with the activation of a whole set of biological processes, such as cell cycle arrest or apoptosis. In addition, these PROTACs, in certain cases, allow for the degradation of the target, with nanomolar potency, in a rapid and sustained manner over time, with less susceptibility to the development of resistance and tolerance, without causing changes in protein expression, and with selectivity to the target, including the respective isoforms or mutations, and to the cell type, overcoming some limitations associated with the use of inhibitors for the same therapeutic target.
  • 707
  • 15 Oct 2022
  • Page
  • of
  • 1352
Video Production Service