Topic Review
α-Synuclein Strains in Parkinson’s Disease
Like many neurodegenerative diseases, Parkinson’s disease (PD) is characterized by the formation of proteinaceous aggregates in brain cells. In PD, those proteinaceous aggregates are formed by the α-synuclein (αSyn) and are considered the trademark of this neurodegenerative disease. In addition to PD, αSyn pathological aggregation is also detected in atypical Parkinsonism, including Dementia with Lewy Bodies (DLB), Multiple System Atrophy (MSA), as well as neurodegeneration with brain iron accumulation, some cases of traumatic brain injuries, and variants of Alzheimer’s disease. Collectively, these (and other) disorders are referred to as synucleinopathies, highlighting the relation between disease type and protein misfolding/aggregation. Despite these pathological relationships, however, synucleinopathies cover a wide range of pathologies, present with a multiplicity of symptoms, and arise from dysfunctions in different neuroanatomical regions and cell populations. Strikingly, αSyn deposition occurs in different types of cells, with oligodendrocytes being mainly affected in MSA, while aggregates are found in neurons in PD. If multiple factors contribute to the development of a pathology, especially in the cases of slow-developing neurodegenerative disorders, the common presence of αSyn aggregation, as both a marker and potential driver of disease, is puzzling.
  • 245
  • 03 Aug 2023
Topic Review
α-Synuclein Phosphorylation and Its Kinases
α-Synuclein is a protein with a molecular weight of 14.5 kDa and consists of 140 amino acids encoded by the SNCA gene. Missense mutations and gene duplications in the SNCA gene cause hereditary Parkinson’s disease. Highly phosphorylated and abnormally aggregated α-synuclein is a major component of Lewy bodies found in neuronal cells of patients with sporadic Parkinson’s disease, dementia with Lewy bodies, and glial cytoplasmic inclusion bodies in oligodendrocytes with multiple system atrophy. Aggregated α-synuclein is cytotoxic and plays a central role in the pathogenesis of the above-mentioned synucleinopathies. In a healthy brain, most α-synuclein is unphosphorylated; however, more than 90% of abnormally aggregated α-synuclein in Lewy bodies of patients with Parkinson’s disease is phosphorylated at Ser129, which is presumed to be of pathological significance. Several kinases catalyze Ser129 phosphorylation, but the role of phosphorylation enzymes in disease pathogenesis and their relationship to cellular toxicity from phosphorylation are not fully understood in α-synucleinopathy. G-protein-coupled receptor kinases, casein kinase II, and polo-like kinase possess the ability to phosphorylate α-synuclein protein. On this point, inhibition of these kinases is able to prevent α-synuclein phosphorylation, which indicates the potential therapeutic targets and availability of drug development for α-synucleinopathies. α-Synuclein phosphorylation can clinically be an accompanying event in the brains of patients with Parkinson’s disease rather than the critical factor for α-synuclein aggregation and toxicity. Nevertheless, increasing phosphorylated α-synuclein and the accumulation with disease progression is useful as a therapeutic target and biomarker.
  • 428
  • 08 Jun 2022
Topic Review
α-Synuclein
The α-syn, encoded by the SNCA1/PARK1 gene, is a ubiquitous protein that is abundantly expressed in kidneys and blood cells, but highly enriched in the brain, particularly in the presynaptic terminals of the neocortex, hippocampus, substantia nigra (SN), thalamus, and cerebellum. Interestingly, it has been found expressed in the cytoplasm of astrocytes and oligodendrocytes in healthy individuals.
  • 697
  • 12 Nov 2021
Topic Review
α-Melanocytic Hormone
The melanocortin system encompasses melanocortin peptides, five receptors, and two endogenous antagonists. Besides pigmentary effects generated by α-Melanocytic Hormone (α-MSH), new physiologic roles in sexual activity, exocrine secretion, energy homeostasis, as well as immunomodulatory actions, exerted by melanocortins, have been described recently. 
  • 543
  • 02 Feb 2021
Topic Review
α- and β-Pinene
α- and β-pinene are well-known representatives of the monoterpenes group, and are found in many plants’ essential oils. A wide range of pharmacological activities have been reported, including antibiotic resistance modulation, anticoagulant, antitumor, antimicrobial, antimalarial, antioxidant, anti-inflammatory, anti-Leishmania, and analgesic effects. 
  • 3.1K
  • 23 Jul 2021
Topic Review
Zoopharmacology
Zoopharmacognosy is the multidisciplinary approach of the self-medication behavior of many kinds of animals. Recent studies showed the presence of antitumoral secondary metabolites in some of the plants employed by animals and their use for the same therapeutic purposes in humans. Other related and sometimes confused term is Zootherapy, which consists on the employment of animal parts and/or their by-products such as toxins, venoms, etc., to treat different human ailments. Therefore, the aim of this work is to provide a brief insight for the use of Zoopharmacology (comprising Zoopharmacognosy and Zootherapy) as new paths to discover drugs studying animal behavior and/or using compounds derived from animals.
  • 698
  • 28 Jun 2021
Topic Review
Zonulin Pathway as a Therapeutic Target
The integrity and thus the function of blood–brain barrier (BBB) TJs play a crucial role in the pathomechanism of neuroinflammatory and neurodegenerative diseases. Previously, it has been suggested that targeting different elements of the zonulin pathway, including actin filaments, TJs, or NF-κB, have potential therapeutic effects on CNS diseases. Indeed, encouraging results are accumulating from a recent preclinical study, using myosin light chain kinase (MLCK) inhibitor ML-7, which attenuates BBB disruption by preventing the disintegration of actin cytoskeletal microfilaments. Similarly, blocking the cleavage of TJ proteins by matrix metalloproteases (MMP) inhibitors, using either direct (broad-spectrum or selective MMP-2 and MMP-9) or indirect inhibitors (COX) has been shown to protect BBB. Peroxisome proliferator-activated receptor-γ (PPAR-γ) agonists, such as rosiglitazone, pioglitazone, or D-allose, also prevented BBB integrity by inhibiting NF-κB activation. Therefore, the use of zonulin inhibitors seems to be justified in the treatment of CNS diseases.
  • 519
  • 04 May 2023
Topic Review
Zinc-Alpha2-Glycoprotein (AZGP1) and Fibrotic Kidney Disease
Chronic Kidney Disease (CKD) is a condition characterized by a gradual loss of kidney function over time. It is typically accompanied by progressive fibrosis of the tubulointerstitial compartment.
  • 401
  • 26 Jan 2022
Topic Review
Zinc Supplementation on Nutritional Status in CKD
Zinc is one of the most important and essential trace elements required by all living organisms for many physiologic functions, with three major biological roles catalytic, structural and regulatory ones. It is the second most abundant metal in mammalian tissues, after iron, with almost 90% of that found in muscle and bone. Likewise, the cellular Zn2+ concentrations are nearly as high as those of major metabolites like the ATP. Zinc is an essential cofactor that influences the expression and activity of numerous enzymes, transcription factors and regulatory proteins.
  • 501
  • 19 Jan 2023
Topic Review
Zinc Supplementation in Pediatric Gastrointestinal Diseases
Children with inflammatory bowel disease (IBD), celiac disease, and those receiving long-term proton pump inhibitor treatments are particularly susceptible to zinc deficiency (ZD). ZD in children with celiac disease and IBD is attributed to insufficient intake, reduced absorption, and increased intestinal loss as a result of the inflammatory process. Zinc plays a crucial role in maintaining the integrity of the gastric mucosa and exerts a gastroprotective action against gastric lesions. 
  • 202
  • 26 Sep 2023
  • Page
  • of
  • 1351