Topic Review
Turning Indoles into Therapeutics via Targeted Delivery Technologies
Developing therapeutics for inflammatory diseases is challenging due to physiological mucosal barriers, systemic side effects, and the local microbiota. In the search for novel methods to overcome some of these problems, drug delivery systems that improve tissue-targeted drug delivery and modulate the microbiota are highly desirable. Microbial metabolites are known to regulate immune responses, an observation that has resulted in important conceptual advances in areas such as metabolite pharmacology and metabolite therapeutics. Indeed, the doctrine of “one molecule, one target, one disease” that has dominated the pharmaceutical industry in the 20th century is being replaced by developing therapeutics which simultaneously manipulate multiple targets through novel formulation approaches, including the multitarget-directed ligands. Thus, metabolites may not only represent biomarkers for disease development, but also, being causally linked to human diseases, an unexploited source of therapeutics.
  • 308
  • 07 Mar 2023
Topic Review
Tunneling Nanotubes for Glioblastoma Treatment
Communication between cells helps tumors acquire resistance to chemotherapy and makes the struggle against cancer more challenging. Tunneling nanotubes (TNTs) are long channels able to connect both nearby and distant cells, contributing to a more malignant phenotype. This finding might be useful in designing novel strategies of drug delivery exploiting these systems of connection. This would be particularly important to reach tumor niches, where glioblastoma stem cells proliferate and provoke immune escape, thereby increasing metastatic potential and tumor recurrence a few months after surgical resection of the primary mass. Along with the direct inhibition of TNT formation, TNT analysis, and targeting strategies might be useful in providing innovative tools for the treatment of this tumor.
  • 611
  • 29 Mar 2022
Topic Review
Tunneling Nanotube in the Nervous System
Tunneling nanotubes (TNTs) are thin, hollow plasma membrane projections that directly connect the lumen of one cell to the lumen of another cell, thereby transferring different cargoes between the two connected cells. TNTs have been shown to play very prominent roles in neuronal development and serve as highways for neurodegenerative diseases in the brain. 
  • 339
  • 08 Oct 2023
Topic Review
Tunicamycin in the Therapeutic Implication of Cancers
Tunicamycin (TM) is one of the potent nucleoside antibiotics and an inhibitor of aberrant glycosylation in various cancer cells, including breast cancer, gastric cancer, and pancreatic cancer, parallel with the inhibition of cancer cell growth and progression of tumors. Like chemotherapies such as doxorubicin (DOX), 5′fluorouracil, etoposide, and cisplatin, TM induces the unfolded protein response (UPR) by blocking aberrant glycosylation. Consequently, stress is induced in the endoplasmic reticulum (ER) that promotes apoptosis.
  • 94
  • 05 Mar 2024
Topic Review
Tumour-Agnostic Therapy for Pancreatic Cancer
The prognosis of patients with solid tumours has remarkably improved with the development of molecular-targeted drugs and immune checkpoint inhibitors. However, the improvements in the prognosis of pancreatic cancer and biliary tract cancer is delayed compared to other carcinomas, and the 5-year survival rates of distal-stage disease are approximately 10 and 20%, respectively. However, a comprehensive analysis of tumour cells using The Cancer Genome Atlas (TCGA) project has led to the identification of various driver mutations. Evidently, few mutations exist across organs, and basket trials targeting driver mutations regardless of the primary organ are being actively conducted. Such basket trials not only focus on the gate keeper-type oncogene mu-tations, such as HER2 and BRAF, but also focus on the caretaker-type tumour suppressor genes, such as BRCA1/2, mismatch repair-related genes, which cause hereditary cancer syndrome.
  • 317
  • 26 Feb 2021
Topic Review
Tumour Proliferation and Imaging Biomarkers
Imaging biomarkers play a key role in the identification of biological particularities within tumours and therefore are an important component of treatment personalisation in radiotherapy. Imaging techniques such as PET, SPECT, MRI that employ tumour-specific biomarkers already play a critical role in patient stratification towards individualized treatment. 
  • 495
  • 11 Oct 2021
Topic Review
Tumour Microenvironment and Metabolism
Many of the factors associated with tumour progression and immune resistance, such as yin yang (YY)1 and glycogen synthase kinase (GSK)3β, regulate acetyl-CoA and the melatonergic pathway, thereby having significant impacts on the dynamic interactions of the different types of cells present in the tumour microenvironment. The association of the aryl hydrocarbon receptor (AhR) with immune suppression in the tumour microenvironment may be mediated by the AhR-induced cytochrome P450 (CYP)1b1-driven ‘backward’ conversion of melatonin to its immediate precursor N-acetylserotonin (NAS). NAS within tumours and released from tumour microenvironment cells activates the brain-derived neurotrophic factor (BDNF) receptor, TrkB, thereby increasing the survival and proliferation of cancer stem-like cells. Acetyl-CoA is a crucial co-substrate for initiation of the melatonergic pathway, as well as co-ordinating the interactions of OXPHOS and glycolysis in all cells of the tumour microenvironment. This provides a model of the tumour microenvironment that emphasises the roles of acetyl-CoA and the melatonergic pathway in shaping the dynamic intercellular metabolic interactions of the various cells within the tumour microenvironment. The potentiation of YY1 and GSK3β by O-GlcNAcylation will drive changes in metabolism in tumours and tumour microenvironment cells in association with their regulation of the melatonergic pathway. 
  • 102
  • 29 Feb 2024
Topic Review
Tumour Microenvironment
The totality of normal cells, blood vessels and molecules embedding the tumor cells and sustaining their growth, characterized by a continuous bidirectional reshaping.
  • 885
  • 02 Feb 2021
Topic Review
Tumour Immune Microenvironment
Targeting altered tumour metabolism is an emerging therapeutic strategy for cancer treatment. The metabolic reprogramming that accompanies the development of malignancy creates targetable differences between cancer cells and normal cells, which may be exploited for therapy. In this entry, we focus on the metabolic dysregulation exerted by tumour cells on the immune microenvironment, leading to tumour immunosuppression. This metabolic rewiring and crosstalk with the tumour microenvironment also play a key role in cell proliferation, metastasis, and the development of treatment resistance. Nonetheless, greater understanding of the metabolic crosstalk presents strategies that aid in the precision targeting of altered tumour metabolism, including therapeutic strategies combining metabolic inhibition with immunotherapy.
  • 663
  • 09 Dec 2020
Topic Review
Tumour Hypoxia-Mediated Immunosuppression
The magnitude of the host immune response can be regulated by either stimulatory or inhibitory immune checkpoint molecules. Receptor-ligand binding between inhibitory molecules is often exploited by tumours to suppress anti-tumour immune responses. Immune checkpoint inhibitors that block these inhibitory interactions can relieve T-cells from negative regulation, and have yielded remarkable activity in the clinic. 
  • 651
  • 29 Jun 2021
  • Page
  • of
  • 1349
Video Production Service