Topic Review
Intertumoural and Intratumoural Heterogeneity in Melanoma
Tumour heterogeneity is a phenomenon where the cancer cells evolve diversely over the course of the disease. As a result of the evolution, the cancer cells can be found to be genetically, epigenetically and/or phenotypically different in order to survive in the human body. The tumour microenvironment also plays a crucial role during the evolution.
  • 393
  • 01 Jul 2022
Topic Review
Intermediate Filaments in the Endothelial Cell
Vimentin, the main protein of endothelial intermediate filaments, is one of the most well-studied of these and belongs to type-III intermediate filaments, commonly found in cells of mesenchymal origin. Vimentin filaments are linked mechanically or by signaling molecules to microfilaments and microtubules by which coordinated cell polarisation and migration are carried out, as well as control over several endotheliocyte functions. Moreover, the soluble vimentin acts as an indicator of the state of the cardiovascular system, and the involvement of vimentin in the development and course of atherosclerosis has been demonstrated.
  • 588
  • 20 Apr 2022
Topic Review
Interleukin-1β and Type I Interferons
Interleukin-1β (IL-1β) and type I interferons (IFNs) are major cytokines involved in autoinflammatory/autoimmune diseases. Separately, the overproduction of each of these cytokines is well described and constitutes the hallmark of inflammasomopathies and interferonopathies, respectively. While their interaction and the crosstalk between their downstream signaling pathways has been mostly investigated in the frame of infectious diseases, little information on their interconnection is still available in the context of autoinflammation promoted by sterile triggers.
  • 400
  • 18 May 2021
Topic Review
Interleukin (IL)-6
Interleukin (IL)-6 is a signaling molecule involved in inflammatory processes, initiating fever and mediating the acute phase response. It is a pleiotropic cytokine secreted by a range of cells, such as T cells, B cells, macrophages, osteoblasts, smooth muscle cells and several tumor cells. It is also released by cells in the brain, such as neurons, microglia and astrocytes.
  • 533
  • 20 Apr 2021
Topic Review
Intercellular Mitochondrial Transfer
Mitochondria are complex intracellular organelles traditionally identified as the powerhouses of eukaryotic cells due to their central role in bioenergetic metabolism. The intercellular transport of mitochondria, defined as horizontal mitochondrial transfer, can occur in mammalian cells both in vitro and in vivo, and in physiological and pathological conditions. Mitochondrial transfer can provide an exogenous mitochondrial source, replenishing dysfunctional mitochondria, thereby improving mitochondrial faults or, as in in the case of tumor cells, changing their functional skills and response to chemotherapy.
  • 550
  • 17 Aug 2021
Topic Review
Intercellular Communication with Endothelial cells
As a cellular interface between the blood and tissues, the endothelial cell (EC) monolayer is involved in the control of key functions including vascular tone, permeability and homeostasis, leucocyte trafficking and hemostasis. EC regulatory functions require long-distance communications between ECs, circulating hematopoietic cells and other vascular cells for efficient adjusting thrombosis, angiogenesis, inflammation, infection and immunity. This intercellular crosstalk operates through the extracellular space and is orchestrated in part by the secretory pathway and the exocytosis of Weibel Palade Bodies (WPBs), secretory granules and extracellular vesicles (EVs).
  • 791
  • 20 Aug 2021
Topic Review
Interactions of SARS-CoV-2 & Variants with Cellular Components
Given the global scale of the COVID-19 pandemic and the health emergency it has caused, it is crucial to understand the impact of SARS-CoV-2 and its mutations. Here, we comprehensively review SARS-CoV-2 interactions with host cells, describe SARS-CoV-2 variants, assess impact of their protein mutations and enumerate databases with SARS-CoV-2 host-pathogen interaction data. 
  • 906
  • 24 Nov 2021
Topic Review
Interactions between Non-Hematological and Multiple Myeloma Cells
Tumors are composed of a plethora of extracellular matrix, tumor and non-tumor cells that form a tumor microenvironment (TME) that nurtures the tumor cells and creates a favorable environment where tumor cells grow and proliferate. In multiple myeloma (MM), the TME is the bone marrow (BM). Non-tumor cells can belong either to the non-hematological compartment that secretes soluble mediators to create a favorable environment for MM cells to grow, or to the immune cell compartment that perform an anti-MM activity in healthy conditions. Indeed, marrow-infiltrating lymphocytes (MILs) are associated with a good prognosis in MM patients and have served as the basis for developing different immunotherapy strategies. However, MM cells and other cells in the BM can polarize their phenotype and activity, creating an immunosuppressive environment where immune cells do not perform their cytotoxic activity properly, promoting tumor progression.
  • 319
  • 10 Aug 2022
Topic Review
Integral Membrane Proteins at the Tight Junctions
Tight junctions (TJ) are cell–cell adhesive structures that define the permeability of barrier-forming epithelia and endothelia. In contrast to this seemingly static function, TJs display a surprisingly high molecular complexity and unexpected dynamic regulation, which allows the TJs to maintain a barrier in the presence of physiological forces and in response to perturbations. Cell–cell adhesion receptors play key roles during the dynamic regulation of TJs. They connect individual cells within cellular sheets and link sites of cell–cell contacts to the underlying actin cytoskeleton.
  • 210
  • 11 Dec 2023
Topic Review
Insulin-Like Growth Factor System
Aberrant bioactivity of the insulin-like growth factor (IGF) system results in the development and progression of several pathologic conditions including cancer. Preclinical studies have shown promising anti-cancer therapeutic potentials for anti-IGF targeted therapies. However, a clear but limited clinical benefit was observed only in a minority of patients with sarcomas. The molecular complexity of the IGF system, which comprises multiple regulators and interactions with other cancer-related pathways, poses a major limitation in the use of anti-IGF agents and supports the need of combinatorial therapeutic strategies to better tackle this axis. 
  • 419
  • 02 Sep 2021
  • Page
  • of
  • 161
ScholarVision Creations