Topic Review
ATF4 Role during HIV-1 Replication
Activating transcription factor 4 (ATF4) is a transcription factor known to regulate genes associated with the sensing of cellular stress such as amino acid deprival, protein misfolding, growth arrest, and cell death. Despite its key role at the crossroads of immune and stress responses, the precise impact of ATF4 during viral infections remains unclear. Thus, ATF4 has a dual role in promoting cell survival or cell death, but also in limiting infection or participating in viral replication.
  • 179
  • 18 Mar 2024
Topic Review
Organoids and iPSC-Based Models
Organoids are self-organized, three-dimensional structures derived from stem cells that can mimic the structure and physiology of human organs. Patient-specific induced pluripotent stem cells (iPSCs) and 3D organoid model systems allow cells to be analyzed in a controlled environment to simulate the characteristics of a given disease by modeling the underlying pathophysiology. 
  • 178
  • 26 Jan 2024
Topic Review
Cytochalasins as Modulators of Stem Cell Differentiation
Regenerative medicine aims to identify new research strategies for the repair and restoration of tissues damaged by pathological or accidental events. Mesenchymal stem cells (MSCs) play a key role in regenerative medicine approaches due to their specific properties, such as the high rate of proliferation, the ability to differentiate into several cell lineages, the immunomodulatory potential, and their easy isolation with minimal ethical issues. One of the main goals of regenerative medicine is to modulate, both in vitro and in vivo, the differentiation potential of MSCs to improve their use in the repair of damaged tissues. Over the years, much evidence has been collected about the ability of cytochalasins, a large family of 60 metabolites isolated mainly from fungi, to modulate multiple properties of stem cells (SCs), such as proliferation, migration, and differentiation, by altering the organization of the cyto- and the nucleo-skeleton. The ability of two different cytochalasins, cytochalasins D and B, to influence specific SC differentiation programs modulated by several agents (chemical or physical) or intra- and extra-cellular factors, is discussed herein, with particular attention to human MSCs (hMSCs).
  • 177
  • 08 Mar 2024
Topic Review
Plasticity of Human RPE Cells
The retina is a specialized light-sensitive tissue in the eye of mammals and humans that provides visual perception, and is actively studied at the cellular, molecular and genetic levels. Photoreceptor cells located in its outer part perform the function of converting light (phototransduction) into neurochemical signals, which are processed in the neurons of the retina and the brain and ultimately form our vision. Functional support for retinal neurons is provided by retinal pigment epithelium cells (RPE cells). The retinal pigment epithelium (RPE) is a single-row layer of pigmented, hexagonal, normally non-proliferating cells located between the choroid and the photoreceptor cells of the retina. The RPE performs many diverse functions to support the retina, including the transepithelial transport of substances, the phagocytosis of photoreceptor outer segments, and a number of processes in the visual cycle, as well as participation in the blood–retinal barrier and secretion of growth factors. The RPE plays an important role in regulating the redox homeostasis of retinal photoreceptors. A few cells have been isolated from the human RPE, which, according to strict clonal analysis and other stem cell criteria (self-renewal and the production of differential progeny), were classified as adult RPE stem cells (RPESCs). The number of  mammalian RPESCs was determined in vitro experiments, from which it became clear that  to 2% of cells are capable of proliferation, self-renewal, and the expression of specific genes characterizing stem cells. Depending on microenvironmental conditions, RPESCs can remain quiescent in a stemness state or exhibit multipotent differentiation. RPESCs can produce RPE cells and are capable of generating different types of photoreceptors and nerve cells, or mesenchymal cells.
  • 176
  • 15 Mar 2024
Topic Review
Canonical and Non-Canonical Inflammasome Pathway in Ehrlichiosis
Ehrlichia is an obligately intracellular bacterium which is responsible for causing human monocytic ehrlichiosis (HME), a potentially lethal disease similar to toxic shock syndrome and septic shock syndrome. Several studies have indicated that canonical and non-canonical inflammasome activation is a crucial pathogenic mechanism that induces dysregulated inflammation and host cellular death in the pathophysiology of HME. Mechanistically, the activation of canonical and non-canonical inflammasome pathways affected by virulent Ehrlichia infection is due to a block in autophagy. 
  • 175
  • 27 Nov 2023
Topic Review
Chimeric Antigen Receptor T Cell Therapy in AML
Acute myeloid leukemia (AML) is a heterogeneous hematological malignancy that is often associated with relapse and drug resistance after standard chemotherapy or targeted therapy, particularly in older patients. Hematopoietic stem cell transplants are looked upon as the ultimate salvage option with curative intent. Adoptive cell therapy using chimeric antigen receptors (CAR) has shown promise in B cell malignancies and is being investigated in AML.
  • 174
  • 19 Jan 2024
Topic Review
MicroRNA/AKT3 Regulatory Axis in Human Cancers
Serine/threonine kinase (AKT) signaling regulates diverse cellular processes and is one of the most important aberrant cell survival mechanisms associated with tumorigenesis, metastasis, and chemoresistance. Targeting AKT has become an effective therapeutic strategy for the treatment of many cancers. AKT3 (PKBγ), the least studied isoform of the AKT family, has emerged as a major contributor to malignancy. AKT3 is frequently overexpressed in human cancers, and many regulatory oncogenic or tumor suppressor small non-coding RNAs (ncRNAs), including microRNAs (miRNAs), have recently been identified to be involved in regulating AKT3 expression.
  • 170
  • 27 Nov 2023
Topic Review
Altered Glucose Dependency in Drug-Resistant Cancer Cells
A chemotherapeutic approach is crucial in malignancy management, which is often challenging due to the development of chemoresistance. Over time, chemo-resistant cancer cells rapidly repopulate and metastasize, increasing the recurrence rate in cancer patients. Targeting these destined cancer cells is more troublesome for clinicians, as they share biology and molecular cross-talks with normal cells. 
  • 169
  • 22 Sep 2023
Topic Review
Major Depression as a Mitochondria-Associated Disease
The link between mitochondria and major depressive disorder (MDD) is increasingly evident, underscored both by mitochondria’s involvement in many mechanisms identified in depression and the high prevalence of MDD in individuals with mitochondrial disorders. Mitochondrial functions and energy metabolism are increasingly considered to be involved in MDD’s pathogenesis.
  • 169
  • 16 Jan 2024
Topic Review
3D Culture Models of Exosomes in Breast Cancer
Breast cancer comes in different types, making it hard to treat effectively. One particularly aggressive type, called triple-negative breast cancer, is tough to target with current treatments. Scientists use advanced methods like 3D cultures, which mimic human tissue better than traditional lab methods, to study breast cancer. These 3D cultures help understand how tiny communication structures called exosomes affect cancer growth, spread, and response to therapy. Exosomes are like messengers between cells and can influence cancer’s behavior and response to therapy.
  • 169
  • 28 Feb 2024
  • Page
  • of
  • 161
ScholarVision Creations