Topic Review
Protein-Bound Uremic Toxins in Senescence and Kidney Fibrosis
Chronic kidney disease (CKD) is a progressive condition of kidney dysfunction due to diverse causes of injury. In healthy kidneys, protein-bound uremic toxins (PBUTs) are cleared from the systemic circulation by proximal tubule cells through the concerted action of plasma membrane transporters that facilitate their urinary excretion, but the endogenous metabolites are hardly removed with kidney dysfunction and may contribute to CKD progression. Accumulating evidence suggests that senescence of kidney tubule cells influences kidney fibrosis, the common endpoint for CKD with an excessive accumulation of extracellular matrix (ECM). Senescence is a special state of cells characterized by permanent cell cycle arrest and limitation of proliferation, which promotes fibrosis by releasing senescence-associated secretory phenotype (SASP) factors. The accumulation of PBUTs in CKD causes oxidative stress and increases the production of inflammatory (SASP) factors that could trigger fibrosis. Studies gave some clues that PBUTs may also promote senescence in kidney tubular cells. 
  • 220
  • 25 Oct 2023
Topic Review
Receptor Complexes Involving Dopamine Receptors
Dopamine (DA) is a catecholamine, that is, an ethylamine with an attached catechol group (a phenyl group with two hydroxyl groups in meta- and para positions). DA-producing neurons were first identified and mapped in animals by Dahlström and Fuxe in 1964, indicating the existence of neuronal circuits using DA as a neurotransmitter.
  • 218
  • 11 Oct 2023
Topic Review
Caenorhabditis elegans Models in Amyotrophic Lateral Sclerosis Mechanism
Amyotrophic Lateral Sclerosis (ALS) is a debilitating neurodegenerative condition characterized by the progressive degeneration of motor neurons. Despite extensive research in various model animals, the cellular signal mechanisms of ALS remain elusive, impeding the development of efficacious treatments. Among these models, a well-characterized and diminutive organism, Caenorhabditis elegans (C. elegans), has emerged as a potent tool for investigating the molecular and cellular dimensions of ALS pathogenesis. 
  • 218
  • 10 Jan 2024
Topic Review
Caspase-Dependent Programmed Cell Death
Billions of cells die in us every hour, and our tissues do not shrink because there is a natural regulation where Cell Death (CD) is balanced with cell division. The process in which cells eliminate themselves in a controlled manner is called Programmed Cell Death (PCD). The PCD plays an important role during embryonic development, in maintaining homeostasis of the body’s tissues, and in the elimination of damaged cells, under a wide range of physiological and developmental stimuli. Apoptosis is an RCD pathway that occurs inside eukaryotic cells and whose purpose is the death of the cell itself. Apoptosis is a “cellular suicide” in which a protein program of self-destruction triggered by extracellular or intracellular signals is set in motion. RCD means that the steps for cell degeneration are established, but that does not mean that the cell is predetermined to die; that is, there will be no apoptosis if there is no signal to initiate it. The role of apoptosis is important in many physiological and pathological processes of multicellular organisms, such as the morphogenesis of organs and tissues during embryonic development, in the maintenance and regeneration of tissues in the adult animal, in response to pathogens, or as a response to cellular stress and pathologies such as cancer. The number of cells that die by apoptosis is enormous, both during embryonic development and in the adult state, associated with caspases, that not only control apoptosis, but also proliferation, differentiation, cell form and cell migration.
  • 217
  • 08 Jan 2024
Topic Review
Role of Sensory Innervation in Corneal Epithelial Renewal
Corneal clarity is required for vision, and blindness occurs when the cornea becomes opaque. The cornea is covered by unique transparent epithelial cells that serve as an outermost cellular barrier bordering between the cornea and the external environment. Corneal sensory nerves protect the cornea from injury by triggering tearing and blink reflexes, and are also thought to regulate corneal epithelial renewal via unknown mechanism(s). When protective corneal sensory innervation is absent due to infection, trauma, intracranial tumors, surgery, or congenital causes, permanent blindness results from repetitive epithelial microtraumas and failure to heal. The condition is termed neurotrophic keratopathy (NK), with an incidence of 5:10,000 people worldwide.
  • 215
  • 19 Sep 2023
Topic Review
Collagen in Cartilage Damage
Collagens serve essential mechanical functions throughout the body, particularly in the connective tissues. In articular cartilage, collagens provide most of the biomechanical properties of the extracellular matrix essential for its function. Collagen plays a very important role in maintaining the mechanical properties of articular cartilage and the stability of the ECM. Noteworthily, many pathogenic factors in the course of osteoarthritis and rheumatoid arthritis, such as mechanical injury, inflammation, and senescence, are involved in the irreversible degradation of collagen, leading to the progressive destruction of cartilage. 
  • 214
  • 25 Sep 2023
Topic Review
Fascin-1 in Cancer Cell Metastasis
As metastasis is responsible for most cancer-related deaths, understanding the cellular and molecular events that lead to cancer cell migration and invasion will certainly provide insights into novel anti-metastatic therapeutic targets. Fascin-1 is an actin-bundling protein fundamental to all physiological or pathological processes that require cell migration. It is responsible for cross-linking actin microfilaments during the formation of actin-rich cellular structures at the leading edge of migrating cells such as filopodia, lamellipodia and invadopodia. While most epithelial tissues express low levels of Fascin-1, it is dramatically elevated in the majority of cancers and its expression has been associated with more aggressive disease and decreased overall survival. Hence, it has been proposed as a potential anti-cancer target.
  • 213
  • 21 Jul 2023
Topic Review
The Interaction between Melanoma Cells and Tumor Microenvironment
Malignant melanoma is a very aggressive skin cancer, characterized by a heterogeneous nature and high metastatic potential. The incidence of melanoma is continuously increasing worldwide, and it is one of the most common cancers in young adults. The understanding of melanoma biology has increased profoundly, and disease management for patients with disseminated disease has improved due to the emergence of immunotherapy and targeted therapy. However, a significant fraction of patients relapse or do not respond adequately to treatment. This can partly be explained by the complex signaling between the tumor and its microenvironment, giving rise to melanoma phenotypes with different patterns of disease progression.
  • 213
  • 06 Oct 2023
Topic Review
Emerging Roles of Ubiquitination in Biomolecular Condensates
Biomolecular condensates are dynamic non-membrane-bound macromolecular high-order assemblies that participate in a growing list of cellular processes, such as transcription, the cell cycle, etc. Disturbed dynamics of biomolecular condensates are associated with many diseases, including cancer and neurodegeneration. Extensive efforts have been devoted to uncovering the molecular and biochemical grammar governing the dynamics of biomolecular condensates and establishing the critical roles of protein posttranslational modifications (PTMs) in this process.
  • 213
  • 23 Oct 2023
Topic Review
Integral Membrane Proteins at the Tight Junctions
Tight junctions (TJ) are cell–cell adhesive structures that define the permeability of barrier-forming epithelia and endothelia. In contrast to this seemingly static function, TJs display a surprisingly high molecular complexity and unexpected dynamic regulation, which allows the TJs to maintain a barrier in the presence of physiological forces and in response to perturbations. Cell–cell adhesion receptors play key roles during the dynamic regulation of TJs. They connect individual cells within cellular sheets and link sites of cell–cell contacts to the underlying actin cytoskeleton.
  • 213
  • 11 Dec 2023
  • Page
  • of
  • 161
ScholarVision Creations