Topic Review
Aptamer-Based Probes for Cancer Diagnostics and Treatment
Aptamers are single-stranded DNA or RNA oligomers that have the ability to generate unique and diverse tertiary structures that bind to cognate molecules with high specificity. In recent years, aptamer researches have witnessed a huge surge, owing to its unique properties, such as high specificity and binding affinity, low immunogenicity and toxicity, and simplicity of synthesis with negligible batch-to-batch variation. Aptamers may bind to targets, such as various cancer biomarkers, making them applicable for a wide range of cancer diagnosis and treatment. In cancer diagnostic applications, aptamers are used as molecular probes instead of antibodies.
  • 609
  • 08 Dec 2022
Topic Review
Aprotinin
The drug aprotinin (Trasylol, previously Bayer and now Nordic Group pharmaceuticals), is a small protein bovine pancreatic trypsin inhibitor (BPTI), or basic trypsin inhibitor of bovine pancreas, which is an antifibrinolytic molecule that inhibits trypsin and related proteolytic enzymes. Under the trade name Trasylol, aprotinin was used as a medication administered by injection to reduce bleeding during complex surgery, such as heart and liver surgery. Its main effect is the slowing down of fibrinolysis, the process that leads to the breakdown of blood clots. The aim in its use was to decrease the need for blood transfusions during surgery, as well as end-organ damage due to hypotension (low blood pressure) as a result of marked blood loss. The drug was temporarily withdrawn worldwide in 2007 after studies suggested that its use increased the risk of complications or death; this was confirmed by follow-up studies. Trasylol sales were suspended in May 2008, except for very restricted research use. In February 2012 the European Medicines Agency (EMA) scientific committee reverted its previous standpoint regarding aprotinin, and has recommended that the suspension be lifted. Nordic became distributor of aprotinin in 2012.
  • 501
  • 20 Oct 2022
Topic Review
Applications of the Comet Assay in Plant Studies
Contrarily to chronic stresses, acute (i.e., fast and dramatic) changes in environmental factors like temperature, radiation, concentration of toxic substances, or pathogen attack often lead to DNA damage. Some of the stress factors are genotoxic, i.e., they damage the DNA via physical interactions or via interference with DNA replication/repair machinery. However, cytotoxic factors, i.e., those that do not directly damage the DNA, can lead to secondary genotoxic effects either via the induction of the production of reactive oxygen, carbon, or nitrogen species, or via the activation of programmed cell death and related endonucleases. The extent of this damage, as well as the ability of the cell to repair it, represent a significant part of plant stress responses. Information about DNA damage is important for physiological studies as it helps to understand the complex adaptive responses of plants and even to predict the outcome of the plant’s exposure to acute stress. Single cell gel electrophoresis (Comet assay) provides a convenient and relatively inexpensive tool to evaluate DNA strand breaks in the different organs of higher plants, as well as in unicellular algae. Comet assays are widely used in ecotoxicology and biomonitoring applications.
  • 241
  • 29 Feb 2024
Topic Review
Applications of NSCLC Organoid Systems
Lung cancer organoids hold the potential to be used for a variety of different translational research applications. A dynamic model system enables to simulate mechanisms that occur in vivo during cancer growth or under cancer treatment. In particular, the use as a platform for understanding tumor genomic evolution could be of interest, in order to elucidate how under the selective pressure of a given therapy resistance mechanisms develop. Being able to gain a deeper understanding of these processes might allow us to identify alternative treatment strategies for those patients developing resistance, e.g., to tyrosine kinase inhibitors (TKIs).
  • 405
  • 22 Nov 2021
Topic Review
Applications for Colon Organoid Models in Cancer
Organoids are 3D organ-like structures grown from stem cells in vitro that mimic the organ or disease from which they are derived. Due to their stem cell origin, organoids contain a heterogeneous population of cells reflecting the diversity of cell types seen in vivo. Similarly, tumour organoids reflect intratumoural heterogeneity in a way that traditional 2D cell culture and cell lines do not, and, therefore, they show greater promise as a more relevant model for effective disease modelling and drug testing. Tumour organoids arise from cancer stem cells, which contribute to many of the greatest challenges to cancer treatment, including therapy resistance, tumour recurrence, and metastasis. Organoids show promise as relevant in vitro models with a range of applications from drug testing to modelling disease progression.
  • 483
  • 30 Jan 2023
Topic Review
Application of Exfoliated Podocytes from Urine in CKD
Chronic kidney disease (CKD) is a global health issue, affecting more than 10% of the worldwide population. It is defined by structural and functional changes to the kidney. Urinary exfoliated podocytes and podocyte-specific markers have demonstrated value for the early diagnosis of CKD and prognosticating CKD progression.
  • 381
  • 27 Jul 2022
Topic Review
Application of Calcitriol in Breast Cancer
Calcitriol represents the most active VD metabolite and hormonal form, which modulates calcium homeostasis through actions on the kidney, bone, and intestinal tract. However, calcitriol is also known for its potent anticancer effects. In particular, calcitriol inhibits breast cancer cells proliferation and tumorigenesis.
  • 505
  • 03 Dec 2021
Topic Review
Appendage Regeneration in Vertebrates
Appendage regeneration in vertebrates means the ability to regenerate amputated or injured tissues and organs, which is a fascinating property shared by several invertebrates and, interestingly, some vertebrates.
  • 1.2K
  • 01 Jun 2021
Topic Review Peer Reviewed
Apoptosis Regulators Bcl-2 and Caspase-3
Apoptosis, programmed cell death, has a central role in developmental biology and in maintaining the equilibrium of renewing tissues. A founding member of the Bcl-2 family of regulatory proteins for apoptosis is Bcl-2, which is encoded by the BCL2 gene. Caspase-3 shares typical features with all caspases, including the role of acting as a crucial mediator of apoptosis.
  • 800
  • 21 Oct 2022
Topic Review
AP-1 Transcription Factors in Myeloma
Multiple myeloma (MM) is an incurable hematologic malignancy characterized by the clonal expansion of malignant plasma cells within the bone marrow. Activator Protein-1 (AP-1) transcription factors (TFs), comprised of the JUN, FOS, ATF and MAF multigene families, are implicated in a plethora of physiologic processes and tumorigenesis including plasma cell differentiation and MM pathogenesis. Depending on the genetic background, the tumor stage, and cues of the tumor microenvironment, specific dimeric AP-1 complexes are formed. For example, AP-1 complexes containing Fra-1, Fra-2 and B-ATF play central roles in the transcriptional control of B cell development and plasma cell differentiation, while dysregulation of AP-1 family members c-Maf, c-Jun, and JunB is associated with MM cell proliferation, survival, drug resistance, bone marrow angiogenesis, and bone disease. The present review article summarizes our up-to-date knowledge on the role of AP-1 family members in plasma cell differentiation and MM pathophysiology. Moreover, it discusses novel, rationally derived approaches to therapeutically target AP-1 TFs, including protein-protein and protein-DNA binding inhibitors, epigenetic modifiers and natural products.
  • 1.6K
  • 25 May 2021
  • Page
  • of
  • 161
ScholarVision Creations