Topic Review
B Cells in Autoimmunity
B cells are key players in this relationship because activated and differentiated B cells produce secretory immunoglobulin A (sIgA), which binds commensal bacteria to preserve a healthy microbial ecosystem.
  • 500
  • 18 May 2021
Topic Review
Axon Initial Segment and Neurodegenerative Diseases
Brain channelopathies are a group of neurological disorders that result from genetic mutations affecting ion channels in the brain. Ion channels are specialized proteins that play a crucial role in the electrical activity of nerve cells by controlling the flow of ions such as sodium, potassium, and calcium. When these channels are not functioning properly, they can cause a wide range of neurological symptoms such as seizures, movement disorders, and cognitive impairment. In this context, the axon initial segment (AIS) is the site of action potential initiation in most neurons. This region is characterized by a high density of voltage-gated sodium channels (VGSCs), which are responsible for the rapid depolarization that occurs when the neuron is stimulated. The AIS is also enriched in other ion channels, such as potassium channels, that play a role in shaping the action potential waveform and determining the firing frequency of the neuron. In addition to ion channels, the AIS contains a complex cytoskeletal structure that helps to anchor the channels in place and regulate their function. 
  • 422
  • 06 May 2023
Topic Review
Autophagy Modulation in Cholangiocarcinoma
Autophagy is a multistep catabolic process through which misfolded, aggregated or mutated proteins and damaged organelles are internalized in membrane vesicles called autophagosomes and ultimately fused to lysosomes for degradation of sequestered components. The multistep nature of the process offers multiple regulation points prone to be deregulated and cause different human diseases but also offers multiple targetable points for designing therapeutic strategies. Cancer cells have evolved to use autophagy as an adaptive mechanism to survive under extremely stressful conditions within the tumor microenvironment, but also to increase invasiveness and resistance to anticancer drugs such as chemotherapy.
  • 541
  • 22 Sep 2021
Topic Review
Autophagy in Spinocerebellar Ataxia Type 3
Machado–Joseph disease (MJD) or spinocerebellar ataxia 3 (SCA3) is a rare, inherited, monogenic, neurodegenerative disease, and the most common SCA worldwide. MJD/SCA3 causative mutation is an abnormal expansion of the triplet CAG at exon 10 within the ATXN3 gene. The gene encodes for ataxin-3, which is a deubiquitinating protein that is also involved in transcriptional regulation. In normal conditions, the ataxin-3 protein polyglutamine stretch has between 13 and 49 glutamines. MJD/SCA3 patients display several signals and symptoms in which the most prominent is ataxia.
  • 271
  • 21 Jul 2023
Topic Review
Autophagy in Polyglutamine
Polyglutamine diseases are a group of congenital neurodegenerative diseases categorized with genomic abnormalities in the expansion of CAG triplet repeats in coding regions of specific disease-related genes. Autophagy is defined as the degradation of intracellular components within the lysosome; self-eating.
  • 567
  • 28 Jan 2023
Topic Review
Autophagy in Parenchymal and Non-Parenchymal Liver Cells
Autophagy is a highly conserved intracellular process for the ordered degradation and recycling of cellular components in lysosomes. In the liver this process is relevant for maintaining liver homeostasis, especially in conditions of hepatic insults.
  • 618
  • 17 Jan 2022
Topic Review
Autophagy in Osteoarthritis
Autophagy is an intracellular mechanism that maintains cellular homeostasis in different tissues. This process declines in cartilage due to aging, which is correlated with osteoarthritis (OA), a multifactorial and degenerative joint disease. Several studies show that microRNAs regulate different steps of autophagy but only a few of them participate in OA. Therefore, epigenetic modifications could represent a therapeutic opportunity during the development of OA. Besides, polyphenols are bioactive components with great potential to counteract diseases, which could reverse altered epigenetic regulation and modify autophagy in cartilage.
  • 502
  • 29 Mar 2022
Topic Review
Autophagy in Multiple Myeloma
Multiple myeloma (MM) is the second most prevalent hematologic malignancy. One of the significant obstacles in treating most MM patients is drug resistance, especially for individuals who have experienced relapses or developed resistance to such cutting-edge treatments. One of the critical processes in developing drug resistance in MM is autophagic activity, an intracellular self-digestive process. In multiple myeloma, it has been shown that High mobility group box protein 1 (HMGB1)-dependent autophagy can contribute to drug resistance.
  • 522
  • 10 Apr 2023
Topic Review
Autophagy in Metabolic Regulation of Cancer Stem Cells
The presence of a specific population of cells within the tumor mass, commonly known as cancer stem cells (CSCs), is thought to initiate tumor formation, maintenance, resistance, and recurrence. Understanding the molecular mechanisms involved in CSC proliferation, self-renewal, and dormancy may provide important clues for developing effective therapeutic strategies. Autophagy, a catabolic process, has long been recognized to regulate various physiological and pathological processes. In addition to regulating cancer cells, studies have identified a critical role for autophagy in regulating CSC functions. Autophagy is activated under various adverse conditions and promotes cellular maintenance, survival, and even cell death.
  • 236
  • 22 Mar 2024
Topic Review
Autophagy in Kidney Disease
Autophagy is a dynamic process by which intracellular damaged macromolecules and organelles are degraded and recycled for the synthesis of new cellular components. Basal autophagy in the kidney acts as a quality control system and is vital for cellular metabolic and organelle homeostasis. Under pathological conditions, autophagy facilitates cellular adaptation; however, activation of autophagy in response to renal injury may be insufficient to provide protection, especially under dysregulated conditions. Kidney-specific deletion of Atg genes in mice has consistently demonstrated worsened acute kidney injury (AKI) outcomes supporting the notion of a pro-survival role of autophagy.
  • 569
  • 07 Jun 2021
  • Page
  • of
  • 161
ScholarVision Creations