Topic Review
Store-Operated Calcium Entry in Cancer Stem Cells
Store-Operated Calcium Entry (SOCE), a major mechanism for Ca2+influx from the extracellular medium into excitable and non-excitable cells, is physiologically triggered by the activation of phospholipase C (PLC) and the production of IP3, which subsequently leads to the release of Ca2+from intracellular stores, mainly the ER, resulting in the activation of store-operated calcium channels in the plasma membrane and a rapid increase in cytosolic Ca2+concentration. SOCE is an extremely complex biological mechanism, with high dependency on the pattern of expression of its components-STIMs, Orai, and TRPC proteins- and its modulators in each cell type. Since the last decades of the 20th century, several studies, both in vivo and in vitro, have reported that an altered expression pattern of the proteins that mediate SOCE leads to unbalanced Ca2+homeostasis, which might contribute to tumor development, poor prognosis, and chemotherapeutic drug resistance.
  • 440
  • 29 Apr 2022
Topic Review
STAMP2 in Diabetes, Inflammatory Diseases and Cancers
STAMP2 plays a pivotal role in the pathogenesis of  type II diabetes, inflammation and cancers. The six transmembrane protein of prostate 2 (STAMP2), a metalloreductase involved in iron and copper homeostasis, is well known for its critical role in the coordination of glucose/lipid metabolism and inflammation in metabolic tissues. STAMP2 is a critical modulator for coordinating metabolism and inflammation. Although STAMP2 has been widely studied focusing on the inhibitory role in inflammation and metabolism, the underlying mechanism is not fully understood. In addition to its role in metabolism and inflammation, STAMP2 is also associated with tumorigenesis. For example, STAMP2 overexpression may increase ROS, which may contribute to increased mutational rates and further progression of prostate cancer.
  • 441
  • 02 Sep 2022
Topic Review
Rac1 Activation, Choroidal Endothelial Cell
Ras-related C3 botulinum toxin substrate 1 (Rac1) is an intracellular Rho GTPase that acts as a biologic switch in response to external stimuli. In studies testing the effects of age-related macular degeneration (AMD)-related stresses, activation of Rac1 was found to be necessary for choroidal endothelial cell invasion into the neural retina to form vision-threatening macular neovascularization. This entry summarizes the regulators of Rac1 activation, effectors of active Rac1 in choroidal endothelial cells, and mechanisms by which active Rap1, a Ras-like GTPase, may prevent active Rac1-mediated choroidal endothelial cell migration.
  • 439
  • 22 Sep 2021
Topic Review
Arabidopsis HY2 NaCl Signaling during Seed Germination
PΦB is an open-chain tetrapyrrole chromophore, a critical synthetase for phytochromes to function as a light receptor to regulate plant growth and development. Arabidopsis HY2 encodes a key synthase of PΦB, which is a ferredoxin-dependent biliverdin reductase that catalyzes the reduction in the A-ring 2,3,31,32-diene system to produce an ethylidene group for assembly with apophytochromes.
  • 439
  • 03 Dec 2021
Topic Review
Metabolic Alterations in Parkinson’s Disease
The PD model flies based on DJ-1β inactivation  exhibited protein metabolism alterations, a shift from the tricarboxylic acid cycle to glycolytic pathway to obtain ATP, together with an increase in the expression of some urea cycle enzymes. Thus, these metabolic changes could contribute to PD pathogenesis and might constitute possible therapeutic targets and/or biomarkers for this disease.
  • 439
  • 27 Jan 2022
Topic Review
Applications for Colon Organoid Models in Cancer
Organoids are 3D organ-like structures grown from stem cells in vitro that mimic the organ or disease from which they are derived. Due to their stem cell origin, organoids contain a heterogeneous population of cells reflecting the diversity of cell types seen in vivo. Similarly, tumour organoids reflect intratumoural heterogeneity in a way that traditional 2D cell culture and cell lines do not, and, therefore, they show greater promise as a more relevant model for effective disease modelling and drug testing. Tumour organoids arise from cancer stem cells, which contribute to many of the greatest challenges to cancer treatment, including therapy resistance, tumour recurrence, and metastasis. Organoids show promise as relevant in vitro models with a range of applications from drug testing to modelling disease progression.
  • 439
  • 30 Jan 2023
Topic Review
GH/IGF Axis
The GH/IGF axis is a major regulator of bone formation and resorption and is essential to the achievement of normal skeleton growth and homeostasis.
  • 438
  • 28 Jul 2021
Topic Review
BRAF and MEK Inhibitors in Pediatric CNS Tumors
BRAF is a component of the MAPK and PI3K/AKT/mTOR pathways that play a crucial role in cellular proliferation, differentiation, migration, and angiogenesis. Pediatric central nervous system tumors very often show mutations of the MAPK pathway, as demonstrated by next-generation sequencing (NGS), which now has an increasing role in cancer diagnostics.
  • 438
  • 13 Sep 2022
Topic Review
Transthyretin: Osteoarticular and Cardiovascular Diseases
Transthyretin (TTR) is a tetrameric protein transporting hormones in the plasma and brain, which has many other activities that have not been fully acknowledged. TTR is a positive indicator of nutrition status and is negatively correlated with inflammation. TTR is a neuroprotective and oxidative-stress-suppressing factor.
  • 437
  • 16 Nov 2021
Topic Review
Cancer-Associated Adipocytes in Cancer Progression
The tumor microenvironment (TME) plays a key role in promoting and sustaining cancer growth. Adipose tissue (AT), due to its anatomical distribution, is a prevalent component of TME, and contributes to cancer development and progression. Cancer-associated adipocytes (CAAs), reprogrammed by cancer stem cells (CSCs), drive cancer progression by releasing metabolites and inflammatory adipokines. Several mediators released by cancer-associated adipocytes are considered promising therapeutic targets for anticancer therapy.
  • 437
  • 06 Jun 2022
  • Page
  • of
  • 161
Video Production Service