Topic Review
Appendage Regeneration in Vertebrates
Appendage regeneration in vertebrates means the ability to regenerate amputated or injured tissues and organs, which is a fascinating property shared by several invertebrates and, interestingly, some vertebrates.
  • 1.1K
  • 01 Jun 2021
Topic Review
Application of Calcitriol in Breast Cancer
Calcitriol represents the most active VD metabolite and hormonal form, which modulates calcium homeostasis through actions on the kidney, bone, and intestinal tract. However, calcitriol is also known for its potent anticancer effects. In particular, calcitriol inhibits breast cancer cells proliferation and tumorigenesis.
  • 471
  • 03 Dec 2021
Topic Review
Application of Exfoliated Podocytes from Urine in CKD
Chronic kidney disease (CKD) is a global health issue, affecting more than 10% of the worldwide population. It is defined by structural and functional changes to the kidney. Urinary exfoliated podocytes and podocyte-specific markers have demonstrated value for the early diagnosis of CKD and prognosticating CKD progression.
  • 340
  • 27 Jul 2022
Topic Review
Applications for Colon Organoid Models in Cancer
Organoids are 3D organ-like structures grown from stem cells in vitro that mimic the organ or disease from which they are derived. Due to their stem cell origin, organoids contain a heterogeneous population of cells reflecting the diversity of cell types seen in vivo. Similarly, tumour organoids reflect intratumoural heterogeneity in a way that traditional 2D cell culture and cell lines do not, and, therefore, they show greater promise as a more relevant model for effective disease modelling and drug testing. Tumour organoids arise from cancer stem cells, which contribute to many of the greatest challenges to cancer treatment, including therapy resistance, tumour recurrence, and metastasis. Organoids show promise as relevant in vitro models with a range of applications from drug testing to modelling disease progression.
  • 435
  • 30 Jan 2023
Topic Review
Applications of NSCLC Organoid Systems
Lung cancer organoids hold the potential to be used for a variety of different translational research applications. A dynamic model system enables to simulate mechanisms that occur in vivo during cancer growth or under cancer treatment. In particular, the use as a platform for understanding tumor genomic evolution could be of interest, in order to elucidate how under the selective pressure of a given therapy resistance mechanisms develop. Being able to gain a deeper understanding of these processes might allow us to identify alternative treatment strategies for those patients developing resistance, e.g., to tyrosine kinase inhibitors (TKIs).
  • 362
  • 22 Nov 2021
Topic Review
Applications of the Comet Assay in Plant Studies
Contrarily to chronic stresses, acute (i.e., fast and dramatic) changes in environmental factors like temperature, radiation, concentration of toxic substances, or pathogen attack often lead to DNA damage. Some of the stress factors are genotoxic, i.e., they damage the DNA via physical interactions or via interference with DNA replication/repair machinery. However, cytotoxic factors, i.e., those that do not directly damage the DNA, can lead to secondary genotoxic effects either via the induction of the production of reactive oxygen, carbon, or nitrogen species, or via the activation of programmed cell death and related endonucleases. The extent of this damage, as well as the ability of the cell to repair it, represent a significant part of plant stress responses. Information about DNA damage is important for physiological studies as it helps to understand the complex adaptive responses of plants and even to predict the outcome of the plant’s exposure to acute stress. Single cell gel electrophoresis (Comet assay) provides a convenient and relatively inexpensive tool to evaluate DNA strand breaks in the different organs of higher plants, as well as in unicellular algae. Comet assays are widely used in ecotoxicology and biomonitoring applications.
  • 133
  • 29 Feb 2024
Topic Review
Aprotinin
The drug aprotinin (Trasylol, previously Bayer and now Nordic Group pharmaceuticals), is a small protein bovine pancreatic trypsin inhibitor (BPTI), or basic trypsin inhibitor of bovine pancreas, which is an antifibrinolytic molecule that inhibits trypsin and related proteolytic enzymes. Under the trade name Trasylol, aprotinin was used as a medication administered by injection to reduce bleeding during complex surgery, such as heart and liver surgery. Its main effect is the slowing down of fibrinolysis, the process that leads to the breakdown of blood clots. The aim in its use was to decrease the need for blood transfusions during surgery, as well as end-organ damage due to hypotension (low blood pressure) as a result of marked blood loss. The drug was temporarily withdrawn worldwide in 2007 after studies suggested that its use increased the risk of complications or death; this was confirmed by follow-up studies. Trasylol sales were suspended in May 2008, except for very restricted research use. In February 2012 the European Medicines Agency (EMA) scientific committee reverted its previous standpoint regarding aprotinin, and has recommended that the suspension be lifted. Nordic became distributor of aprotinin in 2012.
  • 424
  • 20 Oct 2022
Topic Review
Aptamer-Based Probes for Cancer Diagnostics and Treatment
Aptamers are single-stranded DNA or RNA oligomers that have the ability to generate unique and diverse tertiary structures that bind to cognate molecules with high specificity. In recent years, aptamer researches have witnessed a huge surge, owing to its unique properties, such as high specificity and binding affinity, low immunogenicity and toxicity, and simplicity of synthesis with negligible batch-to-batch variation. Aptamers may bind to targets, such as various cancer biomarkers, making them applicable for a wide range of cancer diagnosis and treatment. In cancer diagnostic applications, aptamers are used as molecular probes instead of antibodies.
  • 563
  • 08 Dec 2022
Topic Review
Aquaporin 4
Aquaporin-4, also known as AQP4, is a water channel protein encoded by the AQP4 gene in humans. AQP4 belongs to the aquaporin family of integral membrane proteins that conduct water through the cell membrane. A limited number of aquaporins are found within the central nervous system (CNS): AQP1, 3, 4, 5, 8, 9, and 11, but more exclusive representation of AQP1, 4, and 9 are found in the brain and spinal cord. AQP4 shows the largest presence in the cerebellum and spinal cord grey matter. In the CNS, AQP4 is the most prevalent aquaporin channel, specifically located at the perimicrovessel astrocyte foot processes, glia limitans, and ependyma. In addition, this channel is commonly found facilitating water movement near cerebrospinal fluid and vasculature. Aquaporin-4 was first identified in 1986. It was the first evidence of the existence of water transport channels. The method that was used to discover the existence of the transport channels was through knockout experiments. With this technique they were able to show the significant role of AQP4 in CNS injuries and brain water imbalances. In 1994 the channel was successfully cloned and initially named Mercury-Insensitive Water Channel.
  • 292
  • 12 Oct 2022
Topic Review
Aquaporin Inhibitors
Aquaporins (AQPs) are water channel proteins that are essential to life, being expressed in all kingdoms. In humans, there are 13 AQPs, at least one of which is found in every organ system. The structural biology of the AQP family is well-established and many functions for AQPs have been reported in health and disease. AQP expression is linked to numerous pathologies including tumor metastasis, fluid dysregulation, and traumatic injury. The targeted modulation of AQPs therefore presents an opportunity to develop novel treatments for diverse conditions. Various techniques such as video microscopy, light scattering and fluorescence quenching have been used to test putative AQP inhibitors in both AQP-expressing mammalian cells and heterologous expression systems. The inherent variability within these methods has caused discrepancy and many molecules that are inhibitory in one experimental system (such as tetraethylammonium, acetazolamide, and anti-epileptic drugs) have no activity in others. Some heavy metal ions (that would not be suitable for therapeutic use) and the compound, TGN-020, have been shown to inhibit some AQPs. Clinical trials for neuromyelitis optica treatments using anti-AQP4 IgG are in progress. However, these antibodies have no effect on water transport. More research to standardize high-throughput assays is required to identify AQP modulators for which there is an urgent and unmet clinical need.
  • 3.9K
  • 06 Sep 2021
  • Page
  • of
  • 161
Video Production Service