Topic Review
Anti-Cancer Role and Therapeutic Potential of Extracellular Vesicles
Cell–cell communication is an important mechanism in biological processes. Extracellular vesicles (EVs), also referred to as exosomes, microvesicles, and prostasomes, are microvesicles secreted from a variety of cells. Importantly, EVs contribute to cancer malignancy mechanisms such as carcinogenesis, proliferation, angiogenesis, metastasis, and escape from the immune system. As EVs are thought to be secreted into body fluids, they have the potential to serve as diagnostic markers for liquid biopsy. In addition, the characteristics of EVs make them suitable for use in drug delivery systems and novel cancer treatments. 
  • 486
  • 22 Dec 2021
Topic Review
The MAL Protein
The MAL gene encodes a 17-kDa protein containing four putative transmembrane segments whose expression is restricted to human T cells, polarized epithelial cells and myelin-forming cells. It organizes condensed membranes to make them functional in specialized pathways of membrane trafficking and cell signaling.
  • 485
  • 20 May 2021
Topic Review
Manganese Superoxide Dismutase in Diseases
Redox equilibria and the modulation of redox signalling play crucial roles in physiological processes. Overproduction of reactive oxygen species (ROS) disrupts the body’s antioxidant defence, compromising redox homeostasis and increasing oxidative stress, leading to the development of several diseases. Manganese superoxide dismutase (MnSOD) is a principal antioxidant enzyme that protects cells from oxidative damage by converting superoxide anion radicals to hydrogen peroxide and oxygen in mitochondria. Systematic studies have demonstrated that MnSOD plays an indispensable role in multiple diseases. 
  • 485
  • 03 Jan 2023
Topic Review
The Potential of Probiotics
Probiotics, by definition, are live microorganisms, and should remain viable when they reach the intended site of action, which is typically the cecum and/or the colon.
  • 484
  • 24 Nov 2021
Topic Review
CAR T-Cells
Chimeric Antigen Receptor (CAR) T-cells are T lymphocytes that have been specifically engineered to target malignant cells. CARs are synthetic molecules designed to activate T cells in response to a specific antigen, mimicking T cell activation through the T cell receptor (TCR) and associated costimulatory molecules.
  • 483
  • 18 Mar 2021
Topic Review
Cytoplasmic Actins in Endothelial Cell
The primary function of the endothelial cells (EC) lining the inner surface of all vessels is to regulate permeability of vascular walls and to control exchange between circulating blood and tissue fluids of organs. The EC actin cytoskeleton plays a crucial role in maintaining endothelial barrier function. Actin cytoskeleton reorganization result in EC contraction and provides a structural basis for the increase in vascular permeability, which is typical for many diseases. Actin cytoskeleton in non-muscle cells presented two actin isoforms: non-muscle β-cytoplasmic and γ-cytoplasmic actins (β-actins and γ-actins), which are encoded by ACTB and ACTG1 genes, respectively. They are ubiquitously expressed in the different cells in vivo and in vitro and the β/γ-actin ratio depends on the cell type. Both cytoplasmic actins are essential for cell survival, but they perform various functions in the interphase and cell division and play different roles in neoplastic transformation. 
  • 483
  • 09 Aug 2021
Topic Review
Techniques to Preserve Endothelial Cells in Vein Grafts
Endothelial cells comprise the intimal layer of the vasculature, playing a crucial role in facilitating and regulating aspects such nutrient transport, vascular homeostasis, and inflammatory response. Endothelial dysfunction is believed to be a key driver for vein graft disease—a pathology in which vein grafts utilised in coronary artery bypass graft surgery develop intimal hyperplasia and accelerated atherosclerosis, resulting in poor long-term patency rates. Activation and denudation of the endothelium following surgical trauma and implantation of the graft encourage a host of immune, inflammatory, and cellular differentiation responses that risk driving the graft to failure. Several approaches have been developed to mitigate the onset and progression of this pathology both clincally and surgically, including optimisation of surgical technique, vein preservation conditions and pharma-modulation. Novel approaches are also under investigation in recent years, including the use of topical gene therapy and the utilisation of endothelial progenitor/colony-forming cells to regenerate vein grafts with the view to improving patient outcomes.
  • 483
  • 10 Oct 2022
Topic Review
TRIM22. A Multitasking Antiviral Factor
Viral invasion of target cells triggers an immediate intracellular host defense system aimed at preventing further propagation of the virus. Viral genomes or early products of viral replication are sensed by a number of pattern recognition receptors, leading to the synthesis and production of type I interferons (IFNs) that, in turn, activate a cascade of IFN-stimulated genes (ISGs) with antiviral functions. Among these, several members of the tripartite motif (TRIM) family are antiviral executors.
  • 482
  • 29 Jul 2021
Topic Review
Exosomes in Alpha-Synucleinopathies
The pathological accumulation of alpha-synuclein governs the pathogenesis of neurodegenerative disorders, such as Parkinson’s disease, dementia with Lewy bodies, and multiple system atrophy, collectively termed alpha-synucleinopathies. Alpha-synuclein can be released in the extracellular space, partly via exosomes, and this extracellular protein pool may contribute to disease progression by facilitating the spread of pathological alpha-synuclein or activating immune cells. The content of exosomes depends on their origin and includes specific proteins, lipids, functional mRNAs and various non-coding RNAs. Given their ability to mediate intercellular communication via the transport of multilevel information, exosomes are considered to be transporters of toxic agents. Beyond neurons, glial cells also release exosomes, which may contain inflammatory molecules and this glia-to-neuron or neuron-to-glia transmission of exosomal alpha-synuclein may contribute to the propagation of pathology and neuroinflammation throughout the brain. In addition, as their content varies as per their originating and recipient cells, these vesicles can be utilized as a diagnostic biomarker for early disease detection, whereas targeted exosomes may be used as scaffolds to deliver therapeutic agents into the brain.
  • 482
  • 21 Jul 2022
Topic Review
Microgravity Effects on the Matrisome
Gravity is fundamental factor determining all processes of development and vital activity on Earth. During evolution, a complex mechanism of response to gravity alterations was formed in multicellular organisms. It includes the “gravisensors” in extracellular and intracellular spaces. Inside the cells, the cytoskeleton molecules are the principal gravity-sensitive structures, and outside the cells these are extracellular matrix (ECM) components. The cooperation between the intracellular and extracellular compartments is implemented through specialized protein structures, integrins. The gravity-sensitive complex is a kind of molecular hub that coordinates the functions of various tissues and organs in the gravitational environment. The functioning of this system is of particular importance under extremal conditions, such as spaceflight microgravity.
  • 482
  • 11 Apr 2022
  • Page
  • of
  • 161
Video Production Service