Topic Review
Epigenetic Regulation/Dysregulation in Cancer Stem Cells
In cancer, several of post-translational modifications can undergo dysregulation, driving intratumoral heterogeneity and leading to tumor subpopulations with novel epigenetic regulation. These epigenetic regulations are carried out mainly by histone writers, erasers and readers.
  • 394
  • 10 May 2022
Topic Review
Chromosome Territories in Hematological Cancers
Chromosomes are organized in distinct nuclear areas designated as chromosome territories (CT). The structural formation of CT is a consequence of chromatin packaging and organization that ultimately affects cell function. Chromosome positioning can identify structural signatures of genomic organization, especially for diseases where changes in gene expression contribute to a given phenotype.  The term “chromosome territories” was first coined by Theodor Boveri (1909) in the 20th century. However, the idea of a territorial-like organization of chromosomes during interphase appeared as early as 1885, described by Carl Rabl, based on his experiments of cell division using Salamandra maculata. Rabl observed a polarized nuclear position of chromosomes at the beginning and at the end of mitosis, suggesting a preserved chromosome position during cell cycle phases.
  • 551
  • 10 May 2022
Topic Review
Extracellular Vesicle-Mediated Mitochondrial Reprogramming in Cancer
Tumors are complex systems in constant communication with their microenvironment on which they rely for growth and survival. EVs, as intercellular communicators, are involved in several hallmarks of cancers, being active players in the remodeling of the TME and priming metastatic niches to support tumor survival, progression, and invasion. Although the importance of mitochondrial state and reprogramming in cancer progression has been established, the underlying mechanisms and metabolic phenotypes are incredibly varied, and knowledge is still lacking.
  • 475
  • 07 May 2022
Topic Review
AHNAK2
AHNAK2 is a relatively newly discovered protein. It can interact with many other proteins. This protein is increased in cells of variety of different cancers. AHNAK2 may play a vital role in cancer formation. AHNAK2 may have a role in early detection of cancer.
  • 458
  • 07 May 2022
Topic Review
Regulation of m6A Modification in GSCs and Tumorigenesis
Glioblastoma is the most common and most lethal primary malignant brain tumor. N6-methyladenosine (m6A) is one of widespread and abundant internal messenger RNA (mRNA) modification found in eukaryotes. Accumulated evidence demonstrates that m6A modification is aberrantly activated in human cancers and is critical for tumorigenesis and metastasis. m6A modification is also strongly involved in key signaling pathways and is associated with prognosis in glioblastoma. Here, the researchers briefly outline the functions of m6A and its regulatory proteins, including m6A writers, erasers, and readers on the fate of RNA. The researchers also summarize the latest breakthroughs in this field, describe the underlying molecular mechanisms that contribute to the tumorigenesis and progression, and highlight the inhibitors targeting the factors in m6A modification in glioblastoma. Further studies focusing on the specific pathways of m6A modification could help identify biomarkers and therapeutic targets that might prevent and treat glioblastoma.
  • 267
  • 06 May 2022
Topic Review
Targeting Ferroptosis against Ischemia/Reperfusion Cardiac Injury
Ischemic heart disease is a leading cause of death worldwide. Primarily, ischemia causes decreased oxygen supply, resulting in damage of the cardiac tissue. Naturally, reoxygenation has been recognized as the treatment of choice to recover blood flow through primary percutaneous coronary intervention. This treatment is the gold standard therapy to restore blood flow, but paradoxically it can also induce tissue injury. A number of different studies in animal models of acute myocardial infarction (AMI) suggest that ischemia-reperfusion injury (IRI) accounts for up to 50% of the final myocardial infarct size. Oxidative stress plays a critical role in the pathological process. Iron is an essential mineral required for a variety of vital biological functions but also has potentially toxic effects. A detrimental process induced by free iron is ferroptosis, a non-apoptotic type of programmed cell death. Accordingly, efforts to prevent ferroptosis in pathological settings have focused on the use of radical trapping antioxidants (RTAs), such as liproxstatin-1 (Lip-1). Hence, it is necessary to develop novel strategies to prevent cardiac IRI, thus improving the clinical outcome in patients with ischemic heart disease. 
  • 629
  • 05 May 2022
Topic Review
Chronic Inflammation in Cancer Cachexia
Cachexia, a type of metabolic syndrome linked to the disease, is associated with a dysregulation of metabolic pathways. Cancer Cachexia is a subtle condition that reduces patients’ quality of life by impairing their response to therapy and survival. Inflammatory mediators that may play a role in the pathogenesis of neoplastic cachexia, for example, overlap with those that may play a role in the pathogenesis of obesity. Cachexia is a complication of cancer-related malnutrition associated with catabolic/hypermetabolic changes.
  • 432
  • 05 May 2022
Topic Review
Induction of Accelerated Aging in a Mouse Model
With the global increase of the elderly population, the improvement of the treatment for various aging-related diseases and the extension of a healthy lifespan have become some of the most important current medical issues. In order to understand the developmental mechanisms of aging and aging-related disorders, animal models are essential to conduct relevant studies. Among them, mice have become one of the most prevalently used model animals for aging-related studies due to their high similarity to humans in terms of genetic background and physiological structure, as well as their short lifespan and ease of reproduction. 
  • 906
  • 05 May 2022
Topic Review
Brain Microvascular Pericytes in Breast Cancer Brain Metastasis
Brain tissue contains the highest number of perivascular pericytes compared to other organs. Pericytes are known to regulate brain perfusion and to play an important role within the neurovascular unit (NVU). The high phenotypic and functional plasticity of pericytes make this cell type a prime candidate to aid physiological adaptations but also propose pericytes as important modulators in diverse pathologies in the brain. This research highlights known phenotypes of pericytes in the brain, discusses the diverse markers for brain pericytes, and reviews current in-vitro and in-vivo experimental models to study pericyte function.
  • 1.0K
  • 05 May 2022
Topic Review
Beta-3 Adrenergic Receptor
The beta-3 adrenergic receptor (β3-AR) is by far the least studied isotype of the beta-adrenergic sub-family. Despite its study being long hampered by the lack of suitable animal and cellular models and inter-species differences, a substantial body of literature on the subject has built up in the last three decades and the physiology of β3-AR is unraveling quickly. As will become evident in this work, β3-AR is emerging as an appealing target for novel pharmacological approaches in several clinical areas involving metabolic, cardiovascular, urinary, and ocular disease.
  • 1.2K
  • 05 May 2022
  • Page
  • of
  • 161
Video Production Service