Topic Review
STAT Proteins in Advanced and Metastasized Prostate Cancer
The STAT proteins bind to specific response elements on the DNA in the nucleus, thereby inducing gene transcription. Based on their various functions, STAT proteins are essential in several health conditions such as autoimmune diseases and cancer. Despite their broad spectrum of activity, only STAT3 affects embryonic development, as shown in STAT3 knock-out mouse experiments.
  • 539
  • 11 Oct 2021
Topic Review
Hippo Pathway in Glioblastoma
Glioblastoma (GBM) represents the most common and malignant tumor of the Central Nervous System (CNS), affecting both children and adults. GBM is one of the deadliest tumor types and it shows a strong multidrug resistance (MDR) and an immunosuppressive microenvironment which remain a great challenge to therapy.
  • 538
  • 11 Jan 2022
Topic Review
Mitochondrial Regulation of Inflammation in Diabetic Kidney Disease
Diabetes is the leading cause of chronic kidney disease worldwide. Despite the burden, the factors contributing to the development and progression of diabetic kidney disease (DKD) remain to be fully elucidated. Increasing evidence suggests that mitochondrial dysfunction is a pathological mediator in DKD as the kidney is a highly metabolic organ rich in mitochondria. Furthermore, low-grade chronic inflammation also contributes to the progression of DKD, and several inflammatory biomarkers have been reported as prognostic markers to risk-stratify patients for disease progression and all-cause mortality.
  • 538
  • 23 Nov 2022
Topic Review
Type I Interferon
Together with type III IFNs, Type I Interferons (IFNs-I) represent the first line of immune defense against viral infections. In the case of RNA viruses, after recognition of viral products by pattern recognition receptors (PRRs), such as the main cytosolic receptors RNA helicases retinoic acid-inducible gene I (RIG-I) and melanoma differentiation-associated gene 5 (MDA5), the signal converges on the activation of the mitochondrial antiviral signaling protein (MAVS), that, in turns, activates the TANK-binding kinase 1 (TBK1), leading to the phosphorylation and activation of IFN-regulatory factors 3 and 7 (IRF3, IRF7) [6,7]. IRFs then translocate to the nucleus and induce the production of IFNs-I (IFNα, IFNβ, IFNε, IFNτ, IFNκ, IFNω, IFNδ and IFNζ).
  • 538
  • 07 Sep 2021
Biography
Joy Delhanty
Joy Delhanty was a world leading cytogeneticist who stayed at University College London all her working life. Gaining her PhD under the supervision of Lionel Penrose in 1962 she made seminal contributions to the fields of Preimplantation Genetic Testing and cancer genomics. “Did it work?” 11 February 1991: With an enthusiasm and energy that might have surprised those that did not know he
  • 537
  • 18 Aug 2022
Topic Review
Adiponectin System (Rescue Hormone)
The adipose tissue, regardless of its role in generating and storing energy, acts as a key player as an endocrine tissue, producing a wide scale of cytokines/hormones called adipokines. Adipokines such as leptin, resistin, visfatin and osteopontin own pro-inflammatory effects on the cardiovascular system in some cases. In contrast, some adipokines have cardioprotective and anti-inflammatory impacts including adiponectin, omentin, and apelin.
  • 537
  • 12 Jul 2022
Topic Review
Nanotechnology-Assisted Cell Tracking
The beneficial effects of nanotechnology in the field of disease diagnosis and therapy depends on the evolution of innovative approaches for cell tracking in living subjects. Recent developments in the use of nanotechnologies have contributed to advance of the high-resolution in vivo imaging methods as well as targeted disease approaches. In this context, the application of strategies for the biomimetic design and functionalization of nanoparticles (NP) to be used for directing cell labelling and their intracellular retention have received growing interest and require further investigation to improve direct cell tracking protocols allowing non-invasive long-term targeted monitoring through in vivo imaging.
  • 536
  • 05 May 2022
Topic Review
Immunological Synapse and Primary Cilium
The primary cilium is a small microtubule-based organelle that extends from the apical surface of most eukaryotic cells into the extracellular space for sensing and transducing a wide range of cues. Defects in cilia growth and function are associated with a group of human inherited multisystemic diseases, known as ciliopathies. In recent years a rising number of ciliary proteins have been described at extraciliary sites, both in ciliated and non-ciliated cells, and have been implicated in cilium-independent functions and different cellular processes. Hematopoietic cells, including T lymphocytes, do not form primary cilia. However, non-ciliated T cells co-opt the ciliogenesis machinery for the assembly and function of the immunological synapse, a well-organized structure formed by immune cells – multiple types of T cells, mast cells, NK cells, B cells, neutrophils, macrophages, and dendritic cells – allowing for antigen recognition and signaling, information exchange and polarized release of molecules into the synaptic cleft. The identification of many, unexpected similarities between the primary cilium and the T cell immunological synapse at the structural, functional and molecular levels have highlighted the homology between these structures, even though they show disparate morphologies. 
  • 536
  • 11 Apr 2022
Topic Review
Caspase Inhibition Improves Electrotransfer Efficiency
Chimeric antigen receptor (CAR) T cell therapy has been approved to treat patients with various B cell-related tumors, including B-cell precursor acute lymphoblastic leukemia (ALL), diffuse large B-cell lymphoma (DLBCL), primary mediastinal B-cell lymphoma (PMBCL), and high-grade B-cell lymphoma. T cell receptor (TCR) knockout is a critical step in producing universal CAR T cells. A promising approach to achieving the knockout is to deliver the CRISPR/Cas9 system into T cells using electrotransfer technology.
  • 536
  • 27 Sep 2020
Topic Review
Lipids in Macrophages of Different Tissue Location
Lipid metabolism is the major intracellular mechanism driving a variety of cellular functions such as energy storage, hormone regulation and cell division. Lipids, being a primary component of the cell membrane, play a pivotal role in the survival of macrophages. Lipids are crucial for a variety of macrophage functions including phagocytosis, energy balance and ageing. Lipid-loaded macrophages have recently been emerging as a hallmark for several diseases.
  • 535
  • 12 Jan 2023
  • Page
  • of
  • 161
Video Production Service