Topic Review
Primary Cilia in Acquired Heart Disease
Primary cilia are non-motile plasma membrane extrusions that display a variety of receptors and mechanosensors. Loss of function results in ciliopathies, which have been strongly linked with congenital heart disease, as well as abnormal development and function of most organ systems. 
  • 670
  • 24 Mar 2022
Topic Review
Carotid Body
Overview of the physiology of the adult carotid body, the main peripheral chemoreceptor in mammals, which contains a physiologically relevant germinal niche with multipotent neural crest-derived stem cells and restricted progenitors from both neural and mesenchymal lineages. The carotid body (CB), a neural-crest-derived organ and the main arterial chemoreceptor in mammals, is composed of clusters of cells called glomeruli. 
  • 668
  • 23 Nov 2020
Topic Review
Cyclin-Dependent Inhibitors in Diet-Induced Obesity and Cancer
Overweight and obesity constitute the most impactful lifestyle-dependent risk factors for cancer and have been tightly linked to a higher number of tumor-related deaths nowadays. The excessive accumulation of energy can lead to an imbalance in the level of essential cellular biomolecules that may result in inflammation and cell-cycle dysregulation. Nutritional strategies and phytochemicals are gaining interest in the management of obesity-related cancers, with several ongoing and completed clinical studies that support their effectiveness. At the same time, cyclin-dependent kinases (CDKs) are becoming an important target in breast and ovarian cancer treatment, with various FDA-approved CDK4/6 inhibitors that have recently received more attention for their potential role in diet-induced obesity (DIO).
  • 668
  • 10 Jun 2022
Topic Review
Endoplasmic Reticulum Stress Sensor IRE1α
Inositol-requiring transmembrane kinase endoribonuclease-1α (IRE1α) is the most prominent and evolutionarily conserved unfolded protein response (UPR) signal transducer during endoplasmic reticulum functional upset (ER stress). A IRE1α signal pathway arbitrates yin and yang of cellular fate in objectionable conditions. It plays several roles in fundamental cellular physiology as well as in several pathological conditions such as diabetes, obesity, inflammation, cancer, neurodegeneration, and in many other diseases.
  • 668
  • 29 Oct 2020
Topic Review
Senescent Fibroblasts and Skin Aging
Skin aging is a multi-factorial process that affects nearly every aspect of skin biology and function. The processes developing in the skin during aging are based on fundamental molecular mechanisms associated with fibroblasts, the main cellular population of the dermis. It has been revealed that the amount of fibroblasts decreases markedly with age and their functional activity is also reduced. This inevitably leads to a decrease in the regenerative abilities of the skin and the progression of its aging.
  • 667
  • 16 Jun 2022
Topic Review
Human Sirtuins
Sirtuins (SIRTs) are nicotinamide adenine dinucleotide-dependent histone deacetylases that in-corporate complex functions in the mechanisms of cell physiology. Mammals have seven distinct members of the SIRT family (SIRT1-7), which play an important role in a well-maintained net-work of metabolic pathways that control and adapt the cell to the environment, energy availabil-ity and cellular stress. Until recently, very few studies investigated the role of SIRTs in modulating viral infection and progeny. Recent studies have demonstrated that SIRT1 and SIRT2 are promis-ing antiviral targets because of their specific connection to numerous metabolic and regulatory processes affected during infection.
  • 667
  • 01 Mar 2021
Topic Review
Calcium in Apoptosis and Cancer
Calcium (Ca2+) is a major second messenger in cells and is essential for the fate and survival of all higher organisms. Different Ca2+ channels, pumps, or exchangers regulate variations in the duration and levels of intracellular Ca2+, which may be transient or sustained. These changes are then decoded by an elaborate toolkit of Ca2+-sensors, which translate Ca2+ signal to intracellular operational cell machinery, thereby regulating numerous Ca2+-dependent physiological processes. Alterations to Ca2+ homoeostasis and signaling are often deleterious and are associated with certain pathological states, including cancer. Altered Ca2+ transmission has been implicated in a variety of processes fundamental for the uncontrolled proliferation and invasiveness of tumor cells and other processes important for cancer progression, such as the development of resistance to cancer therapies.
  • 667
  • 22 Sep 2021
Topic Review
Heat Shock Proteins in Inflammatory Bowel Disease
Inflammatory bowel disease (IBD) is a multifactorial human intestinal disease that arises from numerous, yet incompletely defined, factors. Two main forms, Crohn’s disease (CD) and ulcerative colitis (UC), lead to a chronic pathological form. Heat shock proteins (HSPs) are stress-responsive molecules involved in various pathophysiological processes.
  • 666
  • 01 Nov 2021
Topic Review
TGF-β in Skin Chronic Wounds
Chronic wounds are characterized for their incapacity to heal within an expected time frame. Potential mechanisms driving this impairment are poorly understood and current hypotheses point to the development of an unbalanced milieu of growth factor and cytokines. Among them, TGF-β is considered to promote the broadest spectrum of effects. Although it is known to contribute to healthy skin homeostasis, the highly context-dependent nature of TGF-β signaling restricts the understanding of its roles in healing and wound chronification. Historically, low TGF-β levels have been suggested as a pattern in chronic wounds. However, a revision of the available evidence in humans indicates that this could constitute a questionable argument. Thus, in chronic wounds, divergences regarding skin tissue compartments seem to be characterized by elevated TGF-β levels only in the epidermis. 
  • 666
  • 13 May 2021
Topic Review
Mesenchymal Cells for RP Therapy
Retinitis pigmentosa (RP) is a complex inherited retinal dystrophy currently lacking effective therapies: this represents one of the greatest challenges in the field of ophthalmological research. Stem cells, especially mesenchymal cells represents a feasible therapeutic option in RP, limitating both oxidative stress and apoptotic processes triggered by the disease and promoting cell survival. 
  • 666
  • 26 Oct 2020
  • Page
  • of
  • 161
Video Production Service