Topic Review
Applications of Tactile Sensing
Extensive research has been conducted on the development of high-performance flexible tactile sensors, pursuing the next generation of highly intelligent electronics with diverse potential applications in self-powered wearable sensors, human–machine interactions, electronic skin, and soft robotics. Among the most promising materials that have emerged in this context are functional polymer composites (FPCs), which exhibit exceptional mechanical and electrical properties, enabling them to be excellent candidates for tactile sensors.
  • 395
  • 25 Jun 2023
Topic Review
Nanocellulose/Nanodiamond Hybrids
Nanocellulose can be obtained from low-cost sources and has been extensively studied in the last decades due to its biodegradability, biocompatibility, low weight, large specific surface area, and good mechanical and optical properties. The nanocellulose properties palette can be greatly expanded by incorporating different metals, metal oxides or carbon nanomaterials, with the formation of multifunctional hybrids. Nanocellulose–nanocarbon hybrids are emerging nanomaterials that can respond to many current challenges in areas such as water purification, energy storage and conversion, or biomedicine for drug delivery, tissue engineering, antitumor and antimicrobial therapies, and many others. Nanocellulose/nanodiamonds hybrids combine the bio-based origin, biodegradability, good dispersion in water, and non-toxicity of nanocellulose with the high thermal conductivity, excellent mechanical resistance, and great structural stability of nanodiamonds.
  • 407
  • 25 Jun 2023
Topic Review
Fiber Supercapacitors for Wearable Energy Storage
Future wearable electronics and smart textiles face a major challenge in the development of energy storage devices that are high-performing while still being flexible, lightweight, and safe. Fiber supercapacitors are one of the most promising energy storage technologies for such applications due to their excellent electrochemical characteristics and mechanical flexibility.
  • 311
  • 25 Jun 2023
Topic Review
Analytical Techniques for Detection and Quantification of PFAS
The established methods for performing poly-fluoroalkyl substances (PFAS) analysis are based on Liquid Chromatography-Mass Spectrometry (LC-MS). Both the sample preparation and the development of the chromatographic set-up are crucial steps for reliable, precise, and accurate measurements. According to the literature, the conventional reverse phase separation stationary phase column is the most widely utilized approach. To improve the chromatographic performance, columns equipped with polar functionalized C18 alkyl chains were introduced.
  • 505
  • 21 Jun 2023
Topic Review
Synthetic Antimicrobial Agents for Textile Finishing
Textiles with antimicrobial functionality have been intensively and extensively investigated in the recent decades, mostly because they are present in everyday life in various applications: medicine and healthcare, sportswear, clothing and footwear, furniture and upholstery, air and water purification systems, food packaging etc. Their ability to kill or limit the growth of the microbial population in a certain context defines their activity against bacteria, fungi, and viruses, and even against the initial formation of the biofilm prior to microorganisms’ proliferation. Various classes of antimicrobials have been employed for these highly specialized textiles, namely, organic synthetic reagents and polymers, metals and metal oxides (micro- and nanoparticles), and natural and naturally derived compounds, and their activity and range of applications are critically assessed.
  • 523
  • 21 Jun 2023
Topic Review
Degradation Mechanisms of Bioactive Compounds
The bioactive compounds in fruits, vegetables, herbs, and spices are very vulnerable and can be easily degraded by different factors, including enzymes, thermal treatment, pH, oxidation, light, and/or hydrolysis. Some of the main examples of degradation reactions include: oxidation and hydrolysis of vitamin C, oxidation of phenols, flavonoids, glycosides and hydrolysis of esters. Therefore, actions taken for preventing such degradation are critically important not only for producers, but also for consumers, for whom the presence of these compounds is desirable for health-related requirements. In particular, the degradation of bioactive compounds during thermal treatment (e.g., blanching, pasteurization, sterilization and/or drying) represents a severe problem that must be tackled in the food industry. 
  • 620
  • 21 Jun 2023
Topic Review
Electrospun Magnetic Nanofiber Mats in Cancer Treatment Applications
The number of cancer patients is rapidly increasing worldwide. Among the leading causes of human death, cancer can be regarded as one of the major threats to humans. Although many new cancer treatment procedures such as chemotherapy, radiotherapy, and surgical methods are being developed and used for testing purposes, results show limited efficiency and high toxicity, even if they have the potential to damage cancer cells in the process. In contrast, magnetic hyperthermia is a field that originated from the use of magnetic nanomaterials, which, due to their magnetic properties and other characteristics, are used in many clinical trials as one of the solutions for cancer treatment. Magnetic nanomaterials can increase the temperature of nanoparticles located in tumor tissue by applying an alternating magnetic field. 
  • 309
  • 20 Jun 2023
Topic Review
Low-Temperature Lithium–Sulfur Batteries
The lithium–sulfur (Li-S) battery is considered to be one of the attractive candidates for breaking the limit of specific energy of lithium-ion batteries and has the potential to conquer the related energy storage market due to its advantages of low-cost, high-energy density, high theoretical specific energy, and environmental friendliness issues.
  • 311
  • 20 Jun 2023
Topic Review
Electronic Structure of SnO2
Tin oxide (SnO2) is a versatile n-type semiconductor with a wide bandgap of 3.6 eV that varies as a function of its polymorph, i.e., rutile, cubic or orthorhombic. Bulk SnO2 has a bandgap of ~~3.6 eV; however, experimental bandgaps range from 1.7 eV to 4 eV, thereupon widening its range of applications to photovoltaics and photocatalysis. Bandgap engineering is widely studied in SnO2, as it belongs to the family of transparent conducting oxides (TCO). Additionally, bandgaps can be controlled via parameters, such as synthesis routes and the application of a substrate-induced strain for thin-film growth that simultaneously produce intrinsic defects and structural changes. 
  • 687
  • 20 Jun 2023
Topic Review
Superconducting YBCO Foams
Superconducting foams of YBa2Cu3Oy (YBCO) are proposed as trapped field magnets or supermagnets. The foams with an open-porous structure are light-weight, mechanically strong and can be prepared in large sample sizes. The trapped field distributions were measured using a scanning Hall probe on various sides of an YBCO foam sample after field-cooling in a magnetic field of 0.5 T produced by a square Nd-Fe-B permanent magnet. The maximum trapped field (TF) measured is about 400 G (77 K) at the bottom of the sample. Several details of the TF distribution, the current flow and possible applicatons of such superconducting foam samples in space applications, e.g., as active elements in flux-pinning docking interfaces (FPDI) or as portable strong magnets to collect debris in space, are outlined.
  • 978
  • 20 Jun 2023
  • Page
  • of
  • 467
ScholarVision Creations