Topic Review
Surface-Enhanced Raman Scattering
The efficiency of the generation of Raman spectra by molecules adsorbed on some substrates (or placed at a very close distance to some substrates) may be many orders of magnitude larger than the efficiency of the generation of Raman spectra by molecules that are not adsorbed. This effect is called surface-enhanced Raman scattering (SERS). In the first SERS experiments, nanostructured plasmonic metals have been used as SERS-active materials. Later, other types of SERS-active materials have also been developed.
  • 1.1K
  • 10 Feb 2021
Topic Review
Surface Treatments of PEEK for Osseointegration to Bone
Polymers, in general, and Poly (Ether-Ether-Ketone) (PEEK) have emerged as potential alternatives to conventional osseous implant biomaterials. Due to its distinct advantages over metallic implants, PEEK has been gaining increasing attention as a prime candidate for orthopaedic and dental implants. Although a myriad of permutations and combinations of different surface treatments are employed to alter the surface topography of PEEK, for the sake of simplicity, these treatments have been classified into the following categories: physical treatment, chemical treatment, surface coating, and composite preparation, with the first surface treatment in the combination determining the classification. Though these terms are arbitrary and could lead to considerable overlap, physical and chemical treatments can be grouped into a subtractive form of surface modification while surface coating can be regarded as an additive form.
  • 276
  • 15 Mar 2023
Topic Review
Surface Treatment in PDMS-Microfluidic Devices
Microfluidic lab-on-a-chip cell culture techniques have been gaining popularity by offering the possibility of reducing the amount of samples and reagents with greater control over the cellular microenvironment. Polydimethylsiloxane (PDMS) is the commonly used polymer for microfluidic cell culture devices because of the cheap and easy fabrication techniques, non-toxicity, biocompatibility, high gas permeability, and optical transparency.
  • 2.7K
  • 07 Dec 2021
Topic Review
Surface Plasmon Coupled Emission Technology
Novel nano-engineering protocols have been actively synergized with fluorescence spectroscopic techniques to yield higher intensity from radiating dipoles, through the process termed plasmon-enhanced fluorescence (PEF). Consequently, the limit of detection of analytes of interest has been dramatically improvised on account of higher sensitivity rendered by augmented fluorescence signals. Metallic thin films sustaining surface plasmon polaritons (SPPs) have been creatively hybridized with such PEF platforms to realize a substantial upsurge in the global collection efficiency in a judicious technology termed surface plasmon-coupled emission (SPCE). This Editorial Review by Dr. Seemesh Bhaskar, University of Illinois Urbana-Champaign, provides a spotlight on the latest developments in SPCE substrate engineering to the broad audience of photo-plasmonics, spectroscopy, micro- & nanotechnology, life sciences, thin films and point-of-care diagnostics.
  • 560
  • 13 Mar 2023
Topic Review
Surface Modification of Magnesium-Based Materials
Mg-based materials, from a comprehensive consideration of energy storage performance, raw material reserves, and prices, have demonstrated potential industrial applications as large-scale hydrogen storage materials. Nevertheless, Mg-based materials also have obvious disadvantages: as a hydrogen storage material, the hydrogen absorption/desorption rate is insufficient, as well as the high hydrogen absorption/desorption temperatures; as the electrode material of Ni-MH batteries, the reactions of Mg with alkaline electrolyte and corrosion are the main problems for applications.
  • 265
  • 28 Jun 2023
Topic Review
Surface modification of dental implants
Dental implants are widely used in the field of oral restoration, but there are still problems leading to implant failures in clinical application, such as failed osseointegration, marginal bone resorption, and peri-implantitis, which restrict the success rate of dental implants and patient satisfaction. Poor osseointegration and bacterial infection are the most essential reasons resulting in implant failure. To improve the clinical outcomes of implants, many scholars devoted to modifying the surface of implants, especially to preparing different physical and chemical modifications to improve the osseointegration between alveolar bone and implant surface. Besides, the bioactive-coatings to promote the adhesion and colonization of ossteointegration-related proteins and cells also aim to improve the osseointegration. Meanwhile, improving the anti-bacterial performance of the implant surface can obstruct the adhesion and activity of bacteria, avoiding the occurrence of inflammation related to implants.
  • 671
  • 20 Nov 2020
Topic Review
Surface Modification of Bacterial Cellulose
The surface of bacterial cellulose was successively modified by copper and zinc oxide nanoparticles using direct current (DC) magnetron sputtering and radio frequency (RF) reactive sputter coating techniques. The target materials, copper and zinc, were 99.99% pure and used in the presence of argon (Ar) gas, while zinc nanoparticles were sputtered in the presence of oxygen gas to make zinc oxide nanoparticles. The as-prepared bacterial cellulose/copper/zinc oxide nanocomposite has good ultraviolet resistance, anti-static and antibacterial characteristics. The surface morphology and chemical compositionof the nanocomposite were examined by X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and energy-dispersive X-ray spectroscopic (EDS) techniques. The prepared bacterial cellulose/copper/zinc oxide nanocomposite illustrates excellent ultraviolet resistance (T.UVA%; 0.16 ± 0.02, T.UVB%; 0.07 ± 0.01, ultraviolet protection factor (UPF); 1850.33 ± 2.12), antistatic behavior (S.H.P; 51.50 ± 4.10, I.E. V; 349.33 ± 6.02) and antibacterial behavior (Escherichia coli; 98.45%, Staphylococcus aureus; 98.11%). Our nanocomposite prepared by sputter coating method could be a promising and effective candidate for ultraviolet resistance, antistatic and antibacterial in term of functional, technical, medical and in many daily life applications.  
  • 1.4K
  • 01 Nov 2020
Topic Review
Surface Modification in Surface Plasmon Resonance Assays
Surface plasmon resonance (SPR) comprises several surface-sensitive techniques that enable the trace and ultra-trace detection of various analytes through affinity pairing. 
  • 423
  • 27 Apr 2023
Topic Review
Surface Functionalization of Magnetic Nanoparticles
The surface functionalization of magnetic nanoparticles (MNPs) has witnessed significant progress recently, revolutionizing their utility in multimodal imaging, drug delivery, and catalysis. This progression, spanning over the last decade, has unfolded in discernible phases, each marked by distinct advancements and paradigm shifts. In the early stage, emphasis was placed on foundational techniques, such as ligand exchange and organic coatings, establishing the groundwork for innovations to come.
  • 447
  • 18 Oct 2023
Topic Review
Surface Attached Mortar for Recycled Coarse Aggregate
Due to the large amount of old hardened cement mortar attached to the surface of aggregate and the internal micro-cracks formed by the crushing process, the water absorption, apparent density, and crushing index of recycled coarse aggregate are still far behind those of natural coarse aggregate. The results showed that the physical strengthening technique can remove old hardened mortar and micro powder attached to the surface of recycled coarse aggregate by mechanical action, which can effectively improve the quality of recycled coarse aggregate. 
  • 858
  • 04 Jan 2022
  • Page
  • of
  • 467
Video Production Service