Topic Review
Synthesis of N,N'-Chelate Organoboron Derivatives
N,N′-chelate organoboron compounds have been successfully applied in bioimaging, organic light-emitting diodes (OLEDs), functional polymer, photocatalyst, electroluminescent (EL) devices, and other science and technology areas. However, the concise and efficient synthetic methods become more and more significant for material science, biomedical research, or other practical science.
  • 764
  • 31 Mar 2021
Topic Review
Synthesis of MoS2
Molybdenum disulfide (MoS2), with a two-dimensional (2D) structure, has attracted huge research interest due to its unique electrical, optical, and physicochemical properties. MoS2 has been used as a co-catalyst for the synthesis of novel heterojunction composites with enhanced photocatalytic hydrogen production under solar light irradiation. Nanostructured MoS2 can be fabricated via both top-down and bottom-up approaches.
  • 1.6K
  • 10 Jun 2022
Topic Review
Synthesis of Monoterpene Thiols
Thiols are one of the most convenient synthons in the synthesis of organosulfur compounds. The typical methods to prepare monoterpene thiols include the electrophilic addition of H2S or dithiols to the double bond of monoterpenes; nucleophilic substitution of halides; tosylates/mesylates obtained from corresponding monoterpene alcohols; thia-Michael addition of S-nucleophiles to α,β-unsaturated ketones; nucleophilic epoxide ring opening; nucleophilic substitution of the activated methylene protons; and reduction of sulfochlorides, dithiolanes, thiiranes, and sultones.
  • 456
  • 07 Nov 2023
Topic Review
Synthesis of Monoketone Curcuminoids
Curcumin (or diferuloylmethane), a component of Curcuma longa L. rhizomes, displays various biological and pharmacological activities. However, it is poorly bioavailable and unstable in physiological pH. MKCs’ antimicrobial, anticancer, antioxidant, and antiparasitic actions, as well as other less common MKC biological and pharmacological activities, have been shown to be similar or higher than curcumin. The promising biological and pharmacological activities, combined with the attractive synthetic aspects (e.g., good yields and an easiness of product isolation) to obtain MKCs, make this class of compounds an interesting prospect for further antimicrobial, anticancer, and antiparasitic drug discovery.
  • 174
  • 25 Jan 2024
Topic Review
Synthesis of Metal Complexes of 2-Thiouracil and Derivatives
The thionamide antithyroid agents were discovered largely through observations carried out by various researchers in the 1940s that found that sulfhydryl-containing substances were goitrogenic in animals. Prof. Edwin B. Astwood started using these drugs to treat hyperthyroidism. The development background of these agents, the coordination possibility of 2-thiouracil and its derivatives are presented herein.
  • 382
  • 12 Apr 2024
Topic Review
Synthesis of Metabolite of Resveratrol by Beauveria bassiana
Resveratrol is a well-known dietary polyphenol because it has a variety of beneficial biological activities. The fungus Beauveria bassiana is one of the most frequently used microorganisms for the biotransformation of polyphenols. Recently, resvebassianol A (2), a glycosylated metabolite of resveratrol by B. bassiana, was isolated and structurally elucidated. It was demonstrated to exhibit antioxidant, regenerative, and anti-inflammatory activities with no cytotoxicity. Here, we report the first total synthesis of resvebassianol A, 4'-O-β-(4'"-O-methylglucopyranosyl)resveratrol (2), and its regiomer, 3-O-β-(4 -O-methylglucopyranosyl)resveratrol (3). Key reactions include (i) the construction of a stilbene core via a novel Heck reaction of aryl halides and styrenes, and (ii) glycosylation with unnatural methylglucopyranosyl bromide. The glycosylation step was carefully optimized by varying the bases and solvents. Resveratrol metabolites 2 and 3 were obtained at 7.5% and 6.3% of the overall yield, respectively.
  • 634
  • 25 Oct 2021
Topic Review
Synthesis of Mesoporous Silica Nanoparticles
Mesoporous silica nanoparticles (MSNs) have been advocated as nanocarriers for the treatment of various diseases because of their physicochemical properties and biocompatibility. The use of MSNs combined with therapeutic agents can provide better encapsulation and effective delivery. MSNs as nanocarriers might also be a promising tool to lower the therapeutic dosage levels and thereby to reduce undesired side effects. Furthermore, when combined with imaging compounds for diagnosis, they can be employed as theragnostic agents thus allowing both imaging and therapy using the same nanoparticle.
  • 1.1K
  • 19 Jul 2023
Topic Review
Synthesis of m-Aryloxy Phenols
Innovative synthetic methods have been developed for the preparation of m-aryloxy phenols, which has allowed for the preparation of complex m-aryloxy phenols with functional groups, such as esters, nitriles, and halogens, that impart specific properties of these compounds.
  • 714
  • 30 Mar 2023
Topic Review
Synthesis of Lithium Lanthanum Titanate
Solid state batteries could potentially improve the characteristics of the conventional Li-ion batteries (capacity, charge/discharge rate, safety and sustainability) by replacing the organic electrolyte of the standard battery with a solid (crystalline, but also polymer and hybrid) electrolyte. One of the most promising solid electrolytes is Li3xLa2/3−xTiO3 (LLTO). A number of synthesis techniques have been employed for the preparation of the LLTO compounds. These can be divided on two subcategories: bulk material synthesis and nanostructured material synthesis. The first category contains primarily two methods: sol-gel method and the solid-state reaction method. Nanostructured materials are obtained by thin film deposition techniques and by electrospinning.
  • 136
  • 14 Dec 2023
Topic Review
Synthesis of Ilamycins/Rufomycins and Cyclomarins
Ilamycins/rufomycins and cyclomarins are marine cycloheptapeptides containing unusual amino acids. Produced by Streptomyces sp., these compounds show potent activity against a range of mycobacteria, including multidrug-resistant strains of Mycobacterium tuberculosis. The cyclomarins are also very potent inhibitors of Plasmodium falciparum. Biosynthetically the cyclopeptides are obtained via a heptamodular nonribosomal peptide synthetase (NRPS) that directly incorporates some of the nonproteinogenic amino acids. A wide range of derivatives can be obtained by fermentation, while bioengineering also allows the mutasynthesis of derivatives, especially cyclomarins. Other derivatives are accessible by semisynthesis or total synthesis, reported for both natural product classes.
  • 927
  • 03 Sep 2021
  • Page
  • of
  • 467
Video Production Service