Topic Review
Peroxidase Mimetic Nanozymes in Cancer
Peroxidase (POD) mimetic nanozymes converts endogenous H2O2 to water (H2O) and reactive oxygen species (ROS) in a hypoxic tumor microenvironment is a fascinating approach.
  • 591
  • 31 Aug 2021
Topic Review
Chiral Monolithic Silica-Based HPLC Columns
Ultrahigh pressure HPLC is based on the use of small sub-2-µm non-porous particle packed columns that can provide large surface area than the classical particle packed stationary phase for more efficient separation thus allowing the use of shorter columns with equivalent resolution to save the analysis time. The accompanied high back pressure of the small particle packed columns is overcoming by running the column in an ultrahigh pressure HPLC instrument that can resist high back pressure of up to 15,000 psi or 10,000 psi for longer column lifetimes. This has been achieved by the introduction of UHPLC system to run the chromatographic process with the sub-2-µm particle packed columns. 
  • 598
  • 31 Aug 2021
Topic Review
Laser-Induced Breakdown Spectroscopy
Laser-Induced Breakdown Spectroscopy (LIBS) has been firstly introduced and proposed for analytical applications almost immediately after the invention of the laser in 1960. Since then, it has been proposed and today is widely used as an alternative analytical method for numerous applications. The operating principle of LIBS is quite simple and is based on the interaction of a powerful enough laser beam, focused usually on or in a sample, inducing a dielectric breakdown of the material, thus resulting in plasma formation consisting of excited and non-excited atoms and molecules, fragments of molecular species, electrons and ions, and emitting characteristic radiations, whose spectroscopic analysis can in principle provide the elemental composition fingerprint of the material. The required instrumentation consisting basically of a laser source, and a spectrometer/monochromator equipped with the appropriate light detector (nowadays being almost exclusively some CCD or ICCD type detector) is relatively simple and economically affordable, while significant progresses have been achieved to small size and/or portable equipment, facilitating largely the in situ operation.
  • 1.9K
  • 31 Aug 2021
Topic Review
Hypercrosslinking of Poly(vinylbenzyl chloride) PolyHIPEs
The concept of polymer chain hypercrosslinking was introduced by Davankov, Rogoshin and Tsyurupa, using linear polystyrene or swollen gel-type poly (styrene-co-divinylbenzene) in the presence of an external crosslinker, solvent and a Lewis base as a catalyst.
  • 758
  • 30 Aug 2021
Topic Review
Chemical Rings
The epoxidized group, also known as the oxirane group, can be considered as one of the most crucial rings in chemistry. Due to the high ring strain and the polarization of the C–O bond in this three-membered ring, several reactions can be carried out. One can see such a functional group as a crucial intermediate in fuels, polymers, materials, fine chemistry, etc. 
  • 938
  • 30 Aug 2021
Topic Review
Protein Nanotubes
Nanobiotechnology involves the study of structures found in nature to construct nanodevices for biological and medical applications with the ultimate goal of commercialization. Within a cell most biochemical processes are driven by proteins and associated macromolecular complexes. Evolution has optimized these protein-based nanosystems within living organisms over millions of years. Among these are flagellin and pilin-based systems from bacteria, viral-based capsids, and eukaryotic microtubules and amyloids. While carbon nanotubes (CNTs), and protein/peptide-CNT composites, remain one of the most researched nanosystems due to their electrical and mechanical properties, there are many concerns regarding CNT toxicity and biodegradability. Therefore, proteins have emerged as useful biotemplates for nanomaterials due to their assembly under physiologically relevant conditions and ease of manipulation via protein engineering. 
  • 1.0K
  • 30 Aug 2021
Topic Review
Reprocessable Photodeformable Azobenzene Polymers
Photodeformable azobenzene (azo) polymers are a class of smart polymers that can efficiently convert light energy into mechanical power, holding great promise in various photoactuating applications. They are typically of crosslinked polymer networks with highly oriented azo mesogens embedded inside. Upon exposure to the light of appropriate wavelength, they experience dramatic order parameter change following the configuration change of the azo units. This could result in the generation and accumulation of the gradient microscopic photomechanical force in the crosslinked polymer networks, thus leading to their macroscopic deformation. Most of the presently developed photodeformable azo polymers have stable chemically crosslinked networks, which make their reprocessing impossible, thus limiting their large scale applications. To solve this problem, reprocessable photodeformable azo polymers have been recently developed by introducing dynamic crosslinking networks (including physically crosslinked and dynamic covalent bond-crosslinked ones) into their structures. In addition, some uncrosslinked photodeformable azo polymers have also been reported and constitute one special type of reprocessable photodeformable azo polymers, whose photodeformation behaviors are mainly induced by the selective reorientation of the azo moieties (become perpendicular to the polarization direction of the polarized light) under the irradiation of either polarized blue light or interfering polarized light.
  • 633
  • 30 Aug 2021
Topic Review
High-Temperature PEM Fuel Cells
This review summarizes the current status, operating principles, and recent advances in high-temperature polymer electrolyte membranes (HT-PEMs), with a particular focus on the recent developments, technical challenges and commercial prospects of the HT-PEM fuel cells. A detailed review of the most recent research activities has been covered by this work, with a major focus on the state-of-the-art concepts describing the proton conductivity and degradation mechanisms of HT-PEMs. Also, the fuel cell performance and the lifetime of HT-PEM fuel cells as a function of operating conditions have been discussed. In addition, the review will highlight the important outcomes found in recent literature about the HT-PEM fuel cell. The main objectives of this review paper will be as follows: (1) the latest development of the HT-PEMs, primarily based on polybenzimidazole membranes, (2) the latest development of the fuel cell performance and the lifetime of the HT-PEMs.
  • 1.1K
  • 28 Aug 2021
Topic Review
Terpolymerization of CO2
The terpolymerization of CO2 with epoxides and organic anhydrides or cyclic esters offers the possibility, combining the ROCOP with ring-opening polymerization (ROP), to access a wide range of materials containing polycarbonate and polyester segments along the polymer chain, showing enhanced properties with respect to the simple APC. This review will cover the last advancements in the field, evidencing the crucial role of the catalytic system in determining the microstructural features of the final polymer.
  • 518
  • 27 Aug 2021
Topic Review
III-V Semiconductor Nanowire Ordered Arrays
Ordered arrays of vertically aligned semiconductor nanowires are regarded as promising candidates for the realization of all-dielectric metamaterials, artificial electromagnetic materials, whose properties can be engineered to enable new functions and enhanced device performances with respect to naturally existing materials. In this review we account for the recent progresses in substrate nanopatterning methods, strategies and approaches that overall constitute the preliminary step towards the bottom-up growth of arrays of vertically aligned semiconductor nanowires with a controlled location, size and morphology of each nanowire. While we focus specifically on III-V semiconductor nanowires, several concepts, mechanisms and conclusions reported in the manuscript can be invoked and are valid also for different nanowire materials.
  • 529
  • 27 Aug 2021
  • Page
  • of
  • 467
ScholarVision Creations