Topic Review
Graphene Oxide Derivatives
Matrix-assisted laser desorption/ionization (MALDI) has been considered as one of the most powerful analytical tools for mass spectrometry (MS) analysis of large molecular weight compounds such as proteins, nucleic acids, and synthetic polymers thanks to its high sensitivity, high resolution, and compatibility with high-throughput analysis. Despite these advantages, MALDI cannot be applied to MS analysis of small molecular weight compounds (<500 Da) because of the matrix interference in low mass region. Therefore, numerous efforts have been devoted to solving this issue by using metal, semiconductor, and carbon nanomaterials for MALDI time-of-flight MS (MALDI-TOF-MS) analysis instead of organic matrices. Among those nanomaterials, graphene oxide (GO) is of particular interest considering its unique and highly tunable chemical structures composed of the segregated sp2 carbon domains surrounded by sp3 carbon matrix.
  • 858
  • 02 Feb 2021
Topic Review
Graphene Oxide as an Implant Coating in Dentistry
Dental materials used for reconstructing tooth defects can be improved with graphene oxide (GO), dental implants can be coated using GO, it can be used in tissue engineering in order to repair bone defects and it can also be used to suppress cariogenic biofilm formation. Additionally, GO has also been promoted as a good candidate for neural implants, not only because it provides outstanding resistance to corrosion, but also because it promotes the growth of neuronal cells and reduces ROS expression.
  • 921
  • 06 Sep 2022
Topic Review
Graphene Oxide and Biological Properties
Desirable carbon allotropes such as graphene oxide (GO) have entered the field with several biomedical applications, owing to their exceptional physicochemical and biological features, including extreme strength, found to be 200 times stronger than steel; remarkable light weight; large surface-to-volume ratio; chemical stability; unparalleled thermal and electrical conductivity; and enhanced cell adhesion, proliferation, and differentiation properties. 
  • 2.2K
  • 11 May 2021
Topic Review
Graphene Oxide Action Mechanisms
Graphene oxide (GO), an oxidized form of graphene, is regarded to be more superior to graphene with regards to application in drug delivery due to the presence of functional groups that could allow the binding of different compounds, especially water-insoluble drugs. 
  • 577
  • 23 Aug 2022
Topic Review
Graphene Oxide
Graphene oxide (GO) is a chemical compound with a form similar to graphene that consists of one-atom-thick two-dimensional layers of sp2-bonded carbon. Graphene oxide exhibits high hydrophilicity and dispersibility. Thus, it is difficult to be separated from aqueous solutions. Therefore, functionalization with magnetic nanoparticles is performed in order to prepare a magnetic GO nanocomposite that combines the sufficient adsorption capacity of graphene oxide and the convenience of magnetic separation. Moreover, the magnetic material can be further functionalized with different groups to prevent aggregation and extends its potential application. Until today, a plethora of magnetic GO hybrid materials have been synthesized and successfully employed for the magnetic solid-phase extraction of organic compounds from environmental, agricultural, biological, and food samples. The developed GO nanocomposites exhibit satisfactory stability in aqueous solutions, as well as sufficient surface area. Thus, they are considered as an alternative to conventional sorbents by enriching the analytical toolbox for the analysis of trace organic compounds.
  • 1.7K
  • 15 Jan 2021
Topic Review
Graphene Nanoplatelets Screen-Printed on Woven and Knitted Fabrics
Although the force/pressure applied onto a textile substrate through a uniaxial compression is constant and independent of the yarn direction, it should be noted that such mechanical action causes a geometric change in the substrate, which can be identified by the reduction in its lateral thickness. Therefore, researchers investigate the influence of the fabric orientation on both knitted and woven pressure sensors, in order to generate knowledge for a better design process during textile piezoresistive sensor development.
  • 418
  • 29 Aug 2022
Topic Review
Graphene Nanomaterials for Non-Enzymatic Electrochemical Sensors for Glucose
The high conductivity of graphene material (or its derivatives) and its very large surface area enhance the direct electron transfer, improving non-enzymatic electrochemical sensors sensitivity and its other characteristics. The offered large pores facilitate analyte transport enabling glucose detection even at very low concentration values. Herein classified the enzymeless graphene-based glucose electrocatalysts’ synthesis methods that have been followed into the last few years into four main categories: (i) direct growth of graphene (or oxides) on metallic substrates, (ii) in-situ growth of metallic nanoparticles into graphene (or oxides) matrix, (iii) laser-induced graphene electrodes and (iv) polymer functionalized graphene (or oxides) electrodes. The increment of the specific surface area and the high degree reduction of the electrode internal resistance were recognized as their common targets.
  • 397
  • 28 Jan 2022
Topic Review
Graphene Nanomaterials as Biocompatible/Conductive Scaffolds
The unique properties of graphene make graphene (and its derivatives) a valuable nanomaterial for 2D or 3D stem cells culture maintenance and differentiation. To the best of our knowledge, this is the first review worldwide that besides provide clues and insights on the way we can much better manage and study stem cells especially for tissue engineering, regenerative medicine, transplantation, orthopedic surgery.
  • 914
  • 10 Nov 2020
Topic Review Peer Reviewed
Graphene Nanocomposite Materials for Supercapacitor Electrodes
Graphene and related materials (graphene oxide, reduced graphene oxide) as a subclass of carbon materials and their composites have been examined in various functions as materials in supercapacitor electrodes. They have been suggested as active masses for electrodes in electrochemical double-layer capacitors, tested as conducting additives for redox-active materials showing only poor electronic conductivity, and their use as a coating of active materials for corrosion and dissolution protection has been suggested. They have also been examined as a corrosion-protection coating of metallic current collectors; paper-like materials prepared from them have been proposed as mechanical support and as a current collector of supercapacitor electrodes. This entry provides an overview with representative examples. It outlines advantages, challenges, and future directions.
  • 306
  • 27 Feb 2024
Topic Review
Graphene Growth on Alloy Catalysts
Chemical vapor deposition is the most promising technique for the mass production of high-quality graphene, in which the metal substrate plays a crucial role in the catalytic decomposition of the carbon source, assisting the attachment of the active carbon species, and regulating the structure of the graphene film. Due to some drawbacks of single metal substrates, alloy substrates have gradually attracted attention owing to their complementarity in the catalytic growth of graphene.
  • 1.0K
  • 19 Dec 2020
  • Page
  • of
  • 467
ScholarVision Creations