Topic Review
Graphene, Graphene-Derivatives and Composites
Graphene has accomplished huge notoriety and interest from the universe of science considering its exceptional mechanical, physical and thermal properties. Graphene is an allotrope of carbon having one atom thick size and planar sheets thickly stuffed in a lattice structure resembling a honeycomb structure. Numerous methods to prepare graphene have been created throughout a limited span of time. Due to its fascinating properties, it has found some extensive applications to a wide variety of fields. So, we believe there is a necessity to produce a document of the outstanding methods and some of the novel applications of graphene. 
  • 2.9K
  • 09 Oct 2021
Topic Review
Graphene–Polymer Nanocomposite Foams for Electromagnetic Interference Shielding
Graphene, a unique carbon nanomaterial with a two-dimensional structure and exceptional electrical and mechanical properties, offers advantages such as flexibility, light weight, good chemical stability, and high electromagnetic shielding efficiency. Consequently, it has emerged as an ideal filler in electromagnetic shielding composites, garnering significant attention. In order to meet the requirements of high efficiency and low weight for electromagnetic shielding materials, researchers have explored the use of graphene–polymer nanocomposite foams with a cellular structure. 
  • 166
  • 19 Oct 2023
Topic Review
Graphene-Oxide-Derived Nanomaterials for the Extraction of Metals
Graphene oxide is a compound with a form similar to graphene, composed of carbon atoms in a sp2 single-atom layer of a hybrid connection. Due to its significant surface area and its good mechanical and thermal stability, graphene oxide has a plethora of applications in various scientific fields including heterogenous catalysis, gas storage, environmental remediation, etc. In analytical chemistry, graphene oxide has been successfully employed for the extraction and preconcentration of organic compounds, metal ions, and proteins. 
  • 517
  • 02 Aug 2022
Topic Review
Graphene-Metal Oxide Semiconductor Nanocomposite
Graphene is one of the most favorite materials for materials science research owing to its distinctive chemical and physical properties, such as superior conductivity, extremely larger specific surface area, and good mechanical/chemical stability with the flexible monolayer structure. Graphene is considered as a supreme matrix and electron arbitrator of semiconductor nanoparticles for environmental pollution remediation.
  • 978
  • 07 Dec 2020
Topic Review
Graphene-Integrated Hydrogels based Photothermal Biomedicine
Recently, photothermal therapy (PTT) has emerged as one of the most promising biomedical strategies for different areas in the biomedical field owing to its superior advantages, such as being noninvasive, target-specific and having fewer side effects. Graphene-based hydrogels (GGels), which have excellent mechanical and optical properties, high light-to-heat conversion efficiency, and good biocompatibility, have been intensively exploited as potential photothermal conversion materials. 
  • 485
  • 19 Apr 2021
Topic Review
Graphene-Based Strategies for Viral Diseases
The occurrence of new pandemic  viruses, such as SARS-CoV-1 (2003), MERS-CoV (2012) and SARS-CoV-2 (2019) has  indicated an urgent need for diagnostic tools able to reliably identify infected individuals and to determine if the infection is in the acute phase. Although nanotechnology based on graphene has been poorly applied for the rapid diagnosis of viral diseases, the extraordinary properties of graphene have been recently exploited for the diagnosis of COVID-19. Novel graphene-based field-effect transistor (GFET) biosensors were developed for the quantitative detection of viral RNA and viral spike protein. The fabrication of COVID-19 FET sensor for spike protein recognition is based on the integration of the SARS-CoV-2 spike antibody with graphene, whereas the GFET sensor for viral RNA recognition exploited the CRISPR/Cas biotechnology.
  • 1.2K
  • 27 Oct 2020
Topic Review
Graphene-Based Nanomaterials in Pb(II) Ions Preconcentration and Removal
Graphene-based nanomaterials have attracted significant interest as potential adsorbents for Pb(II) preconcentration and removal due to their high specific surface area, exceptional porosities, numerous adsorption sites and functionalization ease. Particularly, incorporation of magnetic particles with graphene adsorbents offers an effective approach to overcome the separation problems after a lead enrichment step.
  • 313
  • 06 May 2023
Topic Review
Graphene-Based Nanomaterials in Environmental Analysis
Sample preparation is an essential and preliminary procedure of most chemical analyses. Due to the sample diversity, the selection of appropriate adsorbents for the effective preparation and separation of different samples turned out to be important for the methods. By exploiting the rapid development of material science, some novel adsorption materials, especially graphene-based nanomaterials, have shown supremacy in sample pretreatment. In this review, a discussion between these nanomaterials will be made, as well as some basic information about their synthesis. The focus will be on the different environmental applications that use these materials.
  • 771
  • 11 May 2021
Topic Review
Graphene-Based Nanomaterials for Lithium-Sulfur Batteries
The global energy crisis and environmental problems are becoming increasingly serious. It is now urgent to vigorously develop an efficient energy storage system. Lithium-sulfur batteries (LSBs) are considered to be one of the most promising candidates for next-generation energy storage systems due to their high energy density. Sulfur is abundant on Earth, low-cost, and environmentally friendly, which is consistent with the characteristics of new clean energy. Although LSBs possess numerous advantages, they still suffer from numerous problems such as the dissolution and diffusion of sulfur intermediate products during the discharge process, the expansion of the electrode volume, and so on, which severely limit their further development. Graphene is a two-dimensional crystal material with a single atomic layer thickness and honeycomb bonding structure formed by sp2 hybridization of carbon atoms. Since its discovery in 2004, graphene has attracted worldwide attention due to its excellent physical and chemical properties. 
  • 633
  • 29 Apr 2021
Topic Review
Graphene-Based Nanocomposites
Graphene is an allotrope of carbon consisting of a single layer of atoms arranged in a two-dimensional honeycomb lattice. Carbon atoms are bonded with a covalent sp2bond with a single free electron, which accounts for the conductivity of graphene. Graphene is attracting great interests from the physical, chemical, and biomedical fields as a novel nanomaterial with exceptional physical properties, including extremely high thermal conductivity, excellent electrical conductivity, high surface-to-volume ratio, remarkable mechanical strength, and biocompatibility.
  • 922
  • 27 Jan 2022
  • Page
  • of
  • 467
ScholarVision Creations