Topic Review
Hydroxyapatite Doped with Photoluminescent Elements
Photoluminescence is an especially important and useful mechanism for in situ investigations in tissue engineering, surgery, tissue restoration. Labeling with the aid of organic fluorescent molecules has been popular in clinical trials for years. In recent times, many inorganic components, even nanoparticles, have been proposed to be such candidates. Nonetheless, the toxicity of such particles represents a challenge to practical application because of their composition and nano-size character. A luminescent material with high biocompatibility is a perfect candidate for implantation and clinical application. 
  • 469
  • 13 Jan 2022
Topic Review
Hydroxyapatite and Derivatives for Photocatalytic and Antibacterial Applications
Hydroxyapatite (HAp) is an attractive bioceramic from an environmental point of view. It mainly allows ion exchange between Ca2+ and other metal ions, making it an attractive material in the photodegradation of aquatic life effluents. Strategies for the performance of HAp-based functionalized material were reported, for example, doping, immobilization, deposition, incorporation, and support. Due to the production of stoichiometric defects capable of estimating response in the presence of light (UV, visible or solar) through charge carriers' interaction and/or mobility. Its favors photocatalytic performance and positive responses in the physicochemical properties to form an effective and sustainable photocatalyst.  
  • 1.1K
  • 26 May 2022
Topic Review
Hydrosilylation Reactions Catalyzed by Rhenium
Hydrosilylation is a very versatile transformation consisting of the addition of a hydrosilane (H-SiR3) to an unsaturated bond. Organosilicon compounds have found widespread applications in our daily lives in silicon-based materials such as silicon rubbers, adhesives, paper release coating, and so forth. In addition, hydrosilylation is an atom economic reaction to access valuable organosilane intermediates for fine chemical synthesis
  • 982
  • 20 May 2021
Topic Review
Hydrophobic Solid Catalysts Synthesis
The preparation methods of hydrophobic materials such as zeolites, modified silicas and polymers has been reviewed. Particular attention has been paid to the characterization methods classified according to the surface and bulk composition, on one hand, and to the measure of interactions with water or organic solvents, on the other. Some selected applications are analyzed in order to understand the relevance of the reactants/products adsorption to address activity and selectivity of the reaction. Thus, absorption of a non-polar reactant or desorption of a hydrophilic product are much easier on a hydrophobic surface and can effectively boost the catalytic activity.
  • 1.6K
  • 30 Nov 2020
Topic Review
Hydrophilic Modification of Dialysis Membranes
The dialyzer is the core element in the hemodialysis treatment of patients with end-stage kidney disease (ESKD). During hemodialysis treatment, the dialyzer replaces the function of the kidney by removing small and middle-molecular weight uremic toxins, while retaining essential proteins. Meanwhile, a dialyzer should have the best possible hemocompatibility profile as the perpetuated contact of blood with artificial surfaces triggers complement activation, coagulation and immune cell activation, and even low-level activation repeated chronically over years may lead to undesired effects. During hemodialysis, the adsorption of plasma proteins to the dialyzer membrane leads to a formation of a secondary membrane, which can compromise both the uremic toxin removal and hemocompatibility of the dialyzer. Hydrophilic modifications of novel dialysis membranes have been shown to reduce protein adsorption, leading to better hemocompatibility profile and performance stability during dialysis treatments.
  • 751
  • 07 Nov 2022
Topic Review
Hydrometallurgy and Germanium Recovery from Secondary Resources
Though nowadays germanium do not reach the range of popularity than other metals, i.e. rare earth elements, its utility in target industries makes of it also a strategic metal. Though germanium can be found in a series of raw materials, the principal source for its recovery is from secondary wastes of the zinc industry, also, the recycle of germanium-bearing waste materials is becoming of interest. In this recovery the size of the target materials because the diffusion and reaction are to be considered, Hydrometallurgy is performing a key role to the successful achievement of this goal. The present work reviews the most recent applications (2023 and 2024 years) of hydrometallurgical operations on the recovery of germanium from different solid and liquid sources.  
  • 427
  • 30 Apr 2024
Topic Review
Hydrogen Sulfide Corrosion in Oil and Gas Industries
In the oil and gas industry, the corrosion attributed to hydrogen sulfide (H2S) is one of the most significant challenges.
  • 302
  • 26 Feb 2024
Topic Review
Hydrogen Storage Mechanism in Sodium-Based Graphene Nanoflakes
Carbon materials, such as graphene nanoflakes, carbon nanotubes, and fullerene, can be widely used to store hydrogen, and doping these materials with lithium (Li) generally increases their H2-storage densities. Unfortunately, Li is expensive; therefore, alternative metals are required to realize a hydrogen-based society. Sodium (Na) is an inexpensive element with chemical properties that are similar to those of lithium.
  • 566
  • 08 Feb 2022
Topic Review
Hydrogen Sources in Catalytic Transfer Hydrogenation
Catalytic transfer hydrogenation has emerged as a pivotal chemical process with transformative potential in various industries. Unlike conventional direct hydrogenation, catalytic transfer hydrogenation offers numerous advantages, such as enhanced safety, cost-effective hydrogen donors, byproduct recyclability, catalyst accessibility, and the potential for catalytic asymmetric transfer hydrogenation, particularly with chiral ligands. Alcohols such as methanol and isopropanol are prominent hydrogen donors, demonstrating remarkable efficacy in various reductions. Formic acid offers irreversible hydrogenation, preventing the occurrence of reverse reactions, and is extensively utilized in chiral compound synthesis. Unconventional donors such as 1,4-cyclohexadiene and glycerol have shown a good efficiency in reducing unsaturated compounds, with glycerol additionally serving as a green solvent in some transformations. 
  • 861
  • 14 Nov 2023
Topic Review
Hydrogen Production via Chemical Looping Water-Splitting
Hydrogen is an important green energy source and chemical raw material for various industrial processes. The major technique of hydrogen production is steam methane reforming (SMR), which suffers from high energy penalties and enormous CO2 emissions. As an alternative, chemical looping water-splitting (CLWS) technology represents an energy-efficient and environmentally friendly method for hydrogen production. The key to CLWS lies in the selection of suitable oxygen carriers (OCs) that hold outstanding sintering resistance, structural reversibility, and capability to release lattice oxygen and deoxygenate the steam for hydrogen generation. 
  • 553
  • 26 Apr 2023
  • Page
  • of
  • 467
ScholarVision Creations