Topic Review
Anticancer Profile of Rhodanines
The rhodanine derivatives are small compounds with a broad spectrum of biological activities; they are used as antimicrobial, antiviral, antitubercular, anti-inflammatory, antidiabetic, and antitumor agents. In the pharmaceutical market, epalrestat (rhodanine-3-acetic acid) has been marketed in Japan since 1992 for treatment of diabetic complications (peripheral neuropathy). Epalrestat is an inhibitor of aldose reductase, the key enzyme in the polyol pathway of glucose metabolism under hyperglycemic conditions. The good clinical safety profile of epalrestat justified the interest of the researchers in rhodanines as potential drug candidates.
  • 519
  • 20 Jun 2022
Topic Review
Nano-Scaled Materials and Polymer Integration in Biosensing Tools
The evolution of biosensors and diagnostic devices has been thriving in its ability to provide reliable tools with simplified operation steps. These evolutions have paved the way for further advances in sensing materials, strategies, and device structures. Polymeric composite materials can be formed into nanostructures and networks of different types, including hydrogels, vesicles, dendrimers, molecularly imprinted polymers (MIP), etc. Due to their biocompatibility, flexibility, and low prices, they are promising tools for future lab-on-chip devices as both manufacturing materials and immobilization surfaces. Polymers can also allow the construction of scaffold materials and 3D structures that further elevate the sensing capabilities of traditional 2D biosensors.
  • 513
  • 19 Jun 2022
Topic Review
Carbon Nanotubes in Nanocomposite Mixed-Matrix Membranes
Carbon nanotubes (CNTs) are a popular material for gas separation because their walls are naturally smooth, allowing for faster gas transit than other inorganic fillers. It also has excellent mechanical strength, allowing membranes to work under high pressure. Although CNTs have superior qualities to other inorganic fillers, incorporating them into a polymer matrix is difficult due to CNTs' strong van der Waals forces, which cause agglomeration. CNT dispersion must be addressed if the full potential of CNTs is to be realized.
  • 826
  • 17 Jun 2022
Topic Review
Solubility, Dissolution and Permeation Enhancement of Natural Compounds
Natural products are the major sources for drug development because of diversity in their structures. They are isolated molecules obtained from plants, minerals or animal resources and used for a variety of therapeutic purposes of human and animal diseases. Though the utilization of natural drugs is from ancient times, the drugs from natural sources still usually face drawbacks of numerous scientific evidences. Despite this, natural products present the major source of biologically active molecules and play a main role in novel drug discovery. Contrary to this, most natural products do not have characteristics of drugs and their pharmacological use is limited. Some of these characteristics lacking in natural products include low aqueous solubility, decreased dissolution rate, poor permeation and low absorption via biological membranes. The possible techniques for the dissolution/solubility and permeability improvements have been addressed which could enhance the dissolution and permeability up to several times.
  • 512
  • 17 Jun 2022
Topic Review
RNAi Delivery
Bone-related injury and disease constitute a significant global burden both socially and economically. Current treatments have many limitations and thus the development of new approaches for bone-related conditions is imperative. Gene therapy is an emerging approach for effective bone repair and regeneration, with notable interest in the use of RNA interference (RNAi) systems to regulate gene expression in the bone microenvironment. Calcium phosphate nanoparticles represent promising materials for use as non-viral vectors for gene therapy in bone tissue engineering applications due to their many favorable properties, including biocompatibility, osteoinductivity, osteoconductivity, and strong affinity for binding to nucleic acids. However, low transfection rates present a significant barrier to their clinical use. This article reviews the benefits of calcium phosphate nanoparticles for RNAi delivery and highlights the role of surface functionalization in increasing calcium phosphate nanoparticles stability, improving cellular uptake and increasing transfection efficiency. Currently, the underlying mechanistic principles relating to these systems and their interplay during in vivo bone formation is not wholly understood. Furthermore, the optimal microRNA targets for particular bone tissue regeneration applications are still unclear. Therefore, further research is required in order to achieve the optimal calcium phosphate nanoparticles-based systems for RNAi delivery for bone tissue regeneration.
  • 805
  • 17 Jun 2022
Topic Review
Preparation Methods of Titanium Sub-Oxides Electrode
Compared with the instability of graphite electrodes, the high expenditure of noble metal electrodes and boron-doped diamond electrodes, and the hidden dangers of titanium-based metal oxide electrodes, a titanium sub-oxide material has been characterized as an ideal choice of anode material due to its unique crystal and electronic structure, including high conductivity, decent catalytic activity, intense physical and chemical stability, corrosion resistance, low cost, and long service life, etc. 
  • 929
  • 17 Jun 2022
Topic Review
Applications of Graphene Oxide (GO) Materials
Graphene-based materials, due to their high sensitivity, inexpensive, fast response and simple operation, are utilized in the fabrication of biosensors based on various sensing methods, such as optical and electrochemical signaling. These materials are successful electrode materials due to their electrochemical characteristics, which can enhance the detection of biomoleculessuch as thrombin, oligonucleotides, ATP, amino corrosives, and dopamine. Biomolecules have an essential duty in all life activities, such as disease development, so the precise identification of biomolecules is necessary for disease diagnosis and therapy.
  • 1.4K
  • 17 Jun 2022
Topic Review
Techniques for Synthesizing Metal Oxides
Supercapacitors (SCs) have attracted attention as an important energy source for various applications owing to their high power outputs and outstanding energy densities. The electrochemical performance of an SC device is predominantly determined by electrode materials, and thus, the selection and synthesis of the materials are crucial.
  • 624
  • 17 Jun 2022
Topic Review
Catalytic Mechanism of Photocatalysts Based on GCN Heterogeneous
In the current world situation, population and industrial growth have become major problems for energy and environmental concerns. Extremely noxious pollutants such as heavy metal ions, dyes, antibiotics, phenols, and pesticides in water are the main causes behind deprived water quality leading to inadequate access to clean water. In this connection, graphite carbon nitride (GCN or g-C3N4) a nonmetallic polymeric material has been utilized extensively as a visible-light-responsive photocatalyst for a variety of environmental applications.
  • 1.1K
  • 16 Jun 2022
Topic Review
Synthetic Polymer-Based Sensors
Polymers are long-chain, highly molecular weight molecules containing large numbers of repeating units within their backbone derived from the product of polymerization of monomeric units. The materials exhibit unique properties based on the types of bonds that exist within their structures. Among these, some behave as rubbers because of their excellent bending ability, lightweight nature, and shape memory. Moreover, their tunable chemical, structural, and electrical properties make them promising candidates for their use as sensing materials. Polymer-based sensors are highly utilized in the current scenario in the public health sector and environment control due to their rapid detection, small size, high sensitivity, and suitability in atmospheric conditions.
  • 782
  • 16 Jun 2022
  • Page
  • of
  • 467
ScholarVision Creations