Topic Review
Mesoporous Silica-Based Hybrid Materials
Hybrid organic-inorganic catalysts have been extensively investigated by several research groups in the last decades, as they allow combining the structural robust-ness of inorganic solids with the versatility of organic chemistry. Within the field of hybrid catalysts, synthetic strategies based on silica are among the most exploitable, due to the convenience of sol-gel chemistry, to the array of silylderivative precursors that can be synthesized and to the number of post-synthetic functionalization strategies available, amongst others. Exemplificative studies involving mono- and multi-functional silica-based hybrid catalysts featuring different types of active sites (acid, base, redox) have been studied. Materials obtained through different approaches are described and their properties, as well as their catalytic performances, are compared in the literature.
  • 618
  • 25 Feb 2021
Topic Review
Mesoporous Silica Nanoparticles therapy potential
Nanoparticles have become a powerful tool in oncology not only as carrier of the highly toxic chemotherapeutic drugs but also as imaging contrast agents that provide valuable information about the state of the disease and its progression. The enhanced permeation and retention effect for loaded nanocarriers in tumors allow substantial improvement of selectivity and safety of anticancer nanomedicines. Additionally, the possibility to design stimuli-responsive nanocarriers able to release their payload in response to specific stimuli provide an excellent control on the administered dosage.
  • 1.0K
  • 15 Oct 2020
Topic Review
Mesoporous Silica Nanoparticles
Mesoporous silica nanoparticles (MSNs) have been widely employed as drug carriers owing to their exquisite physico-chemical properties. Mesoporous material Solid and porous material, with natural or synthetic character, with an average pore size between microporous (less than 2 nm) and macroporous (more than 50 nm). The pore structure can be ordered or not and provides an extremely high surface area in a relatively small amount of material According to IUPAC notation, the mesoporous category is midway between the pore sizes that define microporous materials, up to 2 nm, and macroporous, pore diameters greater than 50 nm. They have a large number of applications in the fields of catalysis, molecular separation, drug release or chemical sensors among others, as a result of the network of porous cavities in their internal structure. - Examples: ordered mesoporous silica materials, carbon molecular sieves, porous organic / inorganic hybrid materials and porous metal oxides.
  • 960
  • 13 Jan 2021
Topic Review
Mesoporous Carbon in PEMFC Catalysts
Developing durable oxygen reduction reaction (ORR) electrocatalysts is essential to step up the large-scale applications of proton exchange membrane fuel cells (PEMFCs). Traditional ORR electrocatalysts provide satisfactory activity, yet their poor durability limits the long-term applications of PEMFCs. Porous carbon used as catalyst support in Pt/C is vulnerable to oxidation under high potential conditions, leading to Pt nanoparticle dissolution and carbon corrosion.
  • 223
  • 14 Mar 2024
Topic Review
Meso-Zeaxanthin
Meso-zeaxanthin (3R,3´S-zeaxanthin) is a xanthophyll carotenoid, as it contains oxygen and hydrocarbons, and is one of the three stereoisomers of zeaxanthin. Of the three stereoisomers, meso-zeaxanthin is the second most abundant in nature after 3R,3´R-zeaxanthin, which is produced by plants and algae. To date, meso-zeaxanthin has been identified in specific tissues of marine organisms and in the macula lutea, also known as the "yellow spot", of the human retina.
  • 909
  • 02 Dec 2022
Topic Review
Mesenchymal Stem Cell-Based Regenerative Medicine
In recent decades, the biomedical applications of mesenchymal stem cells (MSCs) have attracted increasing attention. MSCs are easily extracted from the bone marrow, fat, and synovium, and differentiate into various cell lineages according to the requirements of specific biomedical applications. As MSCs do not express significant histocompatibility complexes and immune stimulating molecules, they are not detected by immune surveillance and do not lead to graft rejection after transplantation. These properties make them competent biomedical candidates, especially in tissue engineering.
  • 601
  • 29 Mar 2022
Topic Review
Mesenchymal Stem Cell Differentiation
Human mesenchymal stem cells (hMSCs) respond to the characteristics of their surrounding microenvironment, i.e., their extracellular matrix (ECM). The possibility of mimicking the ECM offers the opportunity to elicit specific cell behaviors. The control of surface properties of a biomaterial at the scale level of the components of the ECM has the potential to effectively modulate cell response. Ordered nanoscale silicon pillar arrays were fabricated using reverse micelles of block copolymers on full wafers, with standard deviations lower than 15%. Bioactive synthetic peptides were covalently grafted on nanoarrays to evaluate possible synergies between chemistry and topography on osteogenic differentiation of hMSCs. Functionalization with RGD (Arg-Gly-Asp) and BMP-2 (bone morphogenetic protein-2) mimetic peptides lead to an enhancement of osteogenic differentiation. Bare nanopillar arrays of reduced pitch were found to promote faster hMSC differentiation. These findings highlight the relevance of investigating possibilities of engineering in vitro systems which can be fine-tuned according to the envisaged cell response. 
  • 384
  • 07 Dec 2021
Topic Review
Membranes Used as Separators in Microbial Fuel Cells
Microbial fuel cells (MFCs) are electrochemical devices focused on bioenergy generation and organic matter removal carried out by microorganisms under anoxic environments. In these types of systems, the anodic oxidation reaction is catalyzed by anaerobic microorganisms, while the cathodic reduction reaction can be carried out biotically or abiotically. Membranes as separators in MFCs are the primary requirements for optimal electrochemical and microbiological performance.
  • 797
  • 29 Nov 2021
Topic Review
Membranes Functionalized with Two-Dimensional Materials
Sustainable water desalination and purification membrane processes require new practical pathways to improve their efficiency. To this end, the inclusion of two-dimensional materials in membrane structure has proven to have a significant impact in various applications.
  • 223
  • 01 Nov 2023
Topic Review
Membrane-Based Environmental Remediation
During the last century, industrialization has grown very fast and as a result heavy metals have contaminated many water sources. Due to their high toxicity, these pollutants are hazardous for humans, fish, and aquatic flora. Traditional techniques for their removal are adsorption, electro-dialysis, precipitation, and ion exchange, but they all present various drawbacks. Membrane technology represents an exciting alternative to the traditional ones characterized by high efficiency, low energy consumption and waste production, mild operating conditions, and easy scale-up. In this review, the attention has been focused on applying driven-pressure membrane processes for heavy metal removal, highlighting each of the positive and negative aspects. Advantages and disadvantages, and recent progress on the production of nanocomposite membranes and electrospun nanofiber membranes for the adsorption of heavy metal ions have also been reported and critically discussed. Finally, future prospective research activities and the key steps required to make their use effective on an industrial scale have been presented
  • 670
  • 02 Jul 2021
  • Page
  • of
  • 467
ScholarVision Creations